14,345 research outputs found

    Damage Tolerant Active Contro l: Concept and State of the Art

    Get PDF
    Damage tolerant active control is a new research area relating to fault tolerant control design applied to mechanical structures. It encompasses several techniques already used to design controllers and to detect and to diagnose faults, as well to monitor structural integrity. Brief reviews of the common intersections of these areas are presented, with the purpose to clarify its relations and also to justify the new controller design paradigm. Some examples help to better understand the role of the new area

    A semidefinite relaxation procedure for fault-tolerant observer design

    Get PDF
    A fault-tolerant observer design methodology is proposed. The aim is to guarantee a minimum level of closed-loop performance under all possible sensor fault combinations while optimizing performance under the nominal, fault-free condition. A novel approach is proposed to tackle the combinatorial nature of the problem, which is computationally intractable even for a moderate number of sensors, by recasting the problem as a robust performance problem, where the uncertainty set is composed of all combinations of a set of binary variables. A procedure based on an elimination lemma and an extension of a semidefinite relaxation procedure for binary variables is then used to derive sufficient conditions (necessary and sufficient in the case of one binary variable) for the solution of the problem which significantly reduces the number of matrix inequalities needed to solve the problem. The procedure is illustrated by considering a fault-tolerant observer switching scheme in which the observer outputs track the actual sensor fault condition. A numerical example from an electric power application is presented to illustrate the effectiveness of the design

    Tools for monitoring and controlling distributed applications

    Get PDF
    The Meta system is a UNIX-based toolkit that assists in the construction of reliable reactive systems, such as distributed monitoring and debugging systems, tool integration systems and reliable distributed applications. Meta provides mechanisms for instrumenting a distributed application and the environment in which it executes, and Meta supplies a service that can be used to monitor and control such an instrumented application. The Meta toolkit is built on top of the ISIS toolkit; they can be used together in order to build fault-tolerant and adaptive, distributed applications

    An Adaptive Fault-Tolerant Communication Scheme for Body Sensor Networks

    Get PDF
    A high degree of reliability for critical data transmission is required in body sensor networks (BSNs). However, BSNs are usually vulnerable to channel impairments due to body fading effect and RF interference, which may potentially cause data transmission to be unreliable. In this paper, an adaptive and flexible fault-tolerant communication scheme for BSNs, namely AFTCS, is proposed. AFTCS adopts a channel bandwidth reservation strategy to provide reliable data transmission when channel impairments occur. In order to fulfill the reliability requirements of critical sensors, fault-tolerant priority and queue are employed to adaptively adjust the channel bandwidth allocation. Simulation results show that AFTCS can alleviate the effect of channel impairments, while yielding lower packet loss rate and latency for critical sensors at runtime.Comment: 10 figures, 19 page

    Second-Order Fault Tolerant Extended Kalman Filter for Discrete Time Nonlinear Systems

    Get PDF
    As missing sensor data may severely degrade the overall system performance and stability, reliable state estimation is of great importance in modern data-intensive control, computing, and power systems applications. Aiming at providing a more robust and resilient state estimation technique, this paper presents a novel second-order fault-tolerant extended Kalman filter estimation framework for discrete-time stochastic nonlinear systems under sensor failures, bounded observer-gain perturbation, extraneous noise, and external disturbances condition. The failure mechanism of multiple sensors is assumed to be independent of each other with various malfunction rates. The proposed approach is a locally unbiased, minimum estimation error covariance based nonlinear observer designed for dynamic state estimation under these conditions. It has been successfully applied to a benchmark target-trajectory tracking application. Computer simulation studies have demonstrated that the proposed second-order fault-tolerant extended Kalman filter provides more accurate estimation results, in comparison with traditional first- and second-order extended Kalman filter. Experimental results have demonstrated that the proposed second-order fault-tolerant extended Kalman filter can serve as a powerful alternative to the existing nonlinear estimation approaches

    ISIS and META projects

    Get PDF
    The ISIS project has developed a new methodology, virtual synchony, for writing robust distributed software. High performance multicast, large scale applications, and wide area networks are the focus of interest. Several interesting applications that exploit the strengths of ISIS, including an NFS-compatible replicated file system, are being developed. The META project is distributed control in a soft real-time environment incorporating feedback. This domain encompasses examples as diverse as monitoring inventory and consumption on a factory floor, and performing load-balancing on a distributed computing system. One of the first uses of META is for distributed application management: the tasks of configuring a distributed program, dynamically adapting to failures, and monitoring its performance. Recent progress and current plans are reported

    Fault tolerant architectures for integrated aircraft electronics systems

    Get PDF
    Work into possible architectures for future flight control computer systems is described. Ada for Fault-Tolerant Systems, the NETS Network Error-Tolerant System architecture, and voting in asynchronous systems are covered

    Advanced flight control system study

    Get PDF
    The architecture, requirements, and system elements of an ultrareliable, advanced flight control system are described. The basic criteria are functional reliability of 10 to the minus 10 power/hour of flight and only 6 month scheduled maintenance. A distributed system architecture is described, including a multiplexed communication system, reliable bus controller, the use of skewed sensor arrays, and actuator interfaces. Test bed and flight evaluation program are proposed
    • …
    corecore