207 research outputs found

    Nonphotolithographic nanoscale memory density prospects

    Get PDF
    Technologies are now emerging to construct molecular-scale electronic wires and switches using bottom-up self-assembly. This opens the possibility of constructing nanoscale circuits and memories where active devices are just a few nanometers square and wire pitches may be on the order of ten nanometers. The features can be defined at this scale without using photolithography. The available assembly techniques have relatively high defect rates compared to conventional lithographic integrated circuits and can only produce very regular structures. Nonetheless, with proper memory organization, it is reasonable to expect these technologies to provide memory densities in excess of 10/sup 11/ b/cm/sup 2/ with modest active power requirements under 0.6 W/Tb/s for random read operations

    Array-based architecture for FET-based, nanoscale electronics

    Get PDF
    Advances in our basic scientific understanding at the molecular and atomic level place us on the verge of engineering designer structures with key features at the single nanometer scale. This offers us the opportunity to design computing systems at what may be the ultimate limits on device size. At this scale, we are faced with new challenges and a new cost structure which motivates different computing architectures than we found efficient and appropriate in conventional very large scale integration (VLSI). We sketch a basic architecture for nanoscale electronics based on carbon nanotubes, silicon nanowires, and nano-scale FETs. This architecture can provide universal logic functionality with all logic and signal restoration operating at the nanoscale. The key properties of this architecture are its minimalism, defect tolerance, and compatibility with emerging bottom-up nanoscale fabrication techniques. The architecture further supports micro-to-nanoscale interfacing for communication with conventional integrated circuits and bootstrap loading

    Time complexity of in-memory solution of linear systems

    Get PDF
    In-memory computing with crosspoint resistive memory arrays has been shown to accelerate data-centric computations such as the training and inference of deep neural networks, thanks to the high parallelism endowed by physical rules in the electrical circuits. By connecting crosspoint arrays with negative feedback amplifiers, it is possible to solve linear algebraic problems such as linear systems and matrix eigenvectors in just one step. Based on the theory of feedback circuits, we study the dynamics of the solution of linear systems within a memory array, showing that the time complexity of the solution is free of any direct dependence on the problem size N, rather it is governed by the minimal eigenvalue of an associated matrix of the coefficient matrix. We show that, when the linear system is modeled by a covariance matrix, the time complexity is O(logN) or O(1). In the case of sparse positive-definite linear systems, the time complexity is solely determined by the minimal eigenvalue of the coefficient matrix. These results demonstrate the high speed of the circuit for solving linear systems in a wide range of applications, thus supporting in-memory computing as a strong candidate for future big data and machine learning accelerators.Comment: Accepted by IEEE Trans. Electron Devices. The authors thank Scott Aaronson for helpful discussion about time complexit

    Advances in Nanowire-Based Computing Architectures

    Get PDF
    • …
    corecore