7,614 research outputs found

    Performance improvement in polymer electrolytic membrane fuel cell based on nonlinear control strategies—A comprehensive study

    Get PDF
    A Polymer Electrolytic Membrane Fuel Cell (PEMFC) is an efficient power device for automobiles, but its efficiency and life span depend upon its air delivery system. To ensure improved performance of PEMFC, the air delivery system must ensure proper regulation of Oxygen Excess Ratio (OER). This paper proposes two nonlinear control strategies, namely Integral Sliding Mode Control (ISMC) and Fast Terminal ISMC (FTISMC). Both the controllers are designed to control the OER at a constant level under load disturbances while avoiding oxygen starvation. The derived controllers are implemented in MATLAB/ Simulink. The corresponding simulation results depict that FTISMC has faster tracking performance and lesser fluctuations due to load disturbances in output net power, stack voltage/power, error tracking, OER, and compressor motor voltage. Lesser fluctuations in these parameters ensure increased efficiency and thus extended life of a PEMFC. The results are also compared with super twisting algorithm STA to show the effectiveness of the proposed techniques. ISMC and FTISMC yield 7% and 20% improved performance as compared to STA. The proposed research finds potential applications in hydrogen-powered fuel cell electric vehicles

    Control Strategies of DC–DC Converter in Fuel Cell Electric Vehicle

    Get PDF
    There is a significant need to research and develop a compatible controller for the DC–DC converter used in fuel cells electric vehicles (EVs). Research has shown that fuel cells (FC) EVs have the potential of providing a far more promising performance in comparison to conventional combustion engine vehicles. This study aims to present a universal sliding mode control (SMC) technique to control the DC bus voltage under varying load conditions. Additionally, this research will utilize improved DC–DC converter topologies to boost the output voltage of the FCs. A DC–DC converter with a properly incorporated control scheme can be utilized to regulate the DC bus voltage–. A conventional linear controller, like a PID controller, is not suitable to be used as a controller to regulate the output voltage in the proposed application. This is due to the nonlinearity of the converter. Furthermore, this thesis will explore the use of a secondary power source which will be utilized during the start–up and transient condition of the FCEV. However, in this instance, a simple boost converter can be used as a reference to step–up the fuel cell output voltage. In terms of application, an FCEV requires stepping –up of the voltage through the use of a high power DC–DC converter or chopper. A control scheme must be developed to adjust the DC bus or load voltage to meet the vehicle requirements as well as to improve the overall efficiency of the FCEV. A simple SMC structure can be utilized to handle these issues and stabilize the output voltage of the DC–DC converter to maintain and establish a constant DC–link voltage during the load variations. To address the aforementioned issues, this thesis presents a sliding mode control technique to control the DC bus voltage under varying load conditions using improved DC–DC converter topologies to boost and stabilize the output voltage of the FCs

    A Novel Type-2 Fuzzy Logic for Improved Risk Analysis of Proton Exchange Membrane Fuel Cells in Marine Power Systems Application

    Get PDF
    A marine energy system, which is fundamentally not paired with electric grids, should work for an extended period with high reliability. To put it in another way, by employing electrical utilities on a ship, the electrical power demand has been increasing in recent years. Besides, fuel cells in marine power generation may reduce the loss of energy and weight in long cables and provide a platform such that each piece of marine equipment is supplied with its own isolated wire connection. Hence, fuel cells can be promising power generation equipment in the marine industry. Besides, failure modes and effects analysis (FMEA) is widely accepted throughout the industry as a valuable tool for identifying, ranking, and mitigating risks. The FMEA process can help to design safe hydrogen fueling stations. In this paper, a robust FMEA has been developed to identify the potentially hazardous conditions of the marine propulsion system by considering a general type-2 fuzzy logic set. The general type-2 fuzzy system is decomposed of several interval type-2 fuzzy logic systems to reduce the inherent highly computational burden of the general type-2 fuzzy systems. Linguistic rules are directly incorporated into the fuzzy system. Finally, the results demonstrate the success and effectiveness of the proposed approach in computing the risk priority number as compared to state-of-the-art methods

    Energy Management

    Get PDF
    Forecasts point to a huge increase in energy demand over the next 25 years, with a direct and immediate impact on the exhaustion of fossil fuels, the increase in pollution levels and the global warming that will have significant consequences for all sectors of society. Irrespective of the likelihood of these predictions or what researchers in different scientific disciplines may believe or publicly say about how critical the energy situation may be on a world level, it is without doubt one of the great debates that has stirred up public interest in modern times. We should probably already be thinking about the design of a worldwide strategic plan for energy management across the planet. It would include measures to raise awareness, educate the different actors involved, develop policies, provide resources, prioritise actions and establish contingency plans. This process is complex and depends on political, social, economic and technological factors that are hard to take into account simultaneously. Then, before such a plan is formulated, studies such as those described in this book can serve to illustrate what Information and Communication Technologies have to offer in this sphere and, with luck, to create a reference to encourage investigators in the pursuit of new and better solutions

    Advances in HOSM Control Design and Implementation for PEM Fuel Cell Systems

    Get PDF
    A second order sliding mode strategy to control the air supply and oxygen stoichiometry of a fuel cell based generation system is presented. The control design is accomplished from a complete model of a experimental plant that was previously developed by the authors and specially suited for nonlinear control issues. The resulting controller endows the system with enhanced dynamic characteristics and robustness to model uncertainties and external disturbances. Simulations and experimental results are provided, showing the feasibility and reliability of the approach.Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señale

    Advances in HOSM Control Design and Implementation for PEM Fuel Cell Systems

    Get PDF
    A second order sliding mode strategy to control the air supply and oxygen stoichiometry of a fuel cell based generation system is presented. The control design is accomplished from a complete model of a experimental plant that was previously developed by the authors and specially suited for nonlinear control issues. The resulting controller endows the system with enhanced dynamic characteristics and robustness to model uncertainties and external disturbances. Simulations and experimental results are provided, showing the feasibility and reliability of the approach.Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señale

    30th International Conference on Condition Monitoring and Diagnostic Engineering Management (COMADEM 2017)

    Get PDF
    Proceedings of COMADEM 201

    Soft Computing Techniques and Their Applications in Intel-ligent Industrial Control Systems: A Survey

    Get PDF
    Soft computing involves a series of methods that are compatible with imprecise information and complex human cognition. In the face of industrial control problems, soft computing techniques show strong intelligence, robustness and cost-effectiveness. This study dedicates to providing a survey on soft computing techniques and their applications in industrial control systems. The methodologies of soft computing are mainly classified in terms of fuzzy logic, neural computing, and genetic algorithms. The challenges surrounding modern industrial control systems are summarized based on the difficulties in information acquisition, the difficulties in modeling control rules, the difficulties in control system optimization, and the requirements for robustness. Then, this study reviews soft-computing-related achievements that have been developed to tackle these challenges. Afterwards, we present a retrospect of practical industrial control applications in the fields including transportation, intelligent machines, process industry as well as energy engineering. Finally, future research directions are discussed from different perspectives. This study demonstrates that soft computing methods can endow industry control processes with many merits, thus having great application potential. It is hoped that this survey can serve as a reference and provide convenience for scholars and practitioners in the fields of industrial control and computer science

    Passivity-based Rieman Liouville fractional order sliding mode control of three phase inverter in a grid-connected photovoltaic system

    Get PDF
    Photovoltaic (PV) system parameters are always non-linear due to variable environmental conditions. The Maximum power point tracking (MPPT) is difficult under multiple uncertainties, disruptions and the occurrence of time-varying stochastic conditions. Therefore, Passivity based Fractional order Sliding-Mode controller (PBSMC) is proposed to examine and develop a storage function in error tracking for PV power and direct voltage in this research work. A unique sliding surface for Fractional Order Sliding Mode Control (FOSMC) framework is proposed and its stability and finite time convergence is proved by implementing Lyapunov stability method. An additional input of sliding mode control (SMC) is also added to a passive system to boost the controller performance by removing the rapid uncertainties and disturbances. Therefore, PBSMC, along with globally consistent control efficiency under varying operating conditions is implemented with enhanced system damping and substantial robustness. The novelty of the proposed technique lies in a unique sliding surface for FOSMC framework based on Riemann Liouville (R-L) fractional calculus. Results have shown that the proposed control technique reduces the tracking error in PV output power, under variable irradiance conditions, by 81%, compared to fractional order proportional integral derivative (FOPID) controller. It is reduced by 39%, when compared to passivity based control (PBC) and 28%, when compared to passivity based FOPID (EPBFOPID). The proposed technique led to the least total harmonic distortion in the grid side voltage and current. The tracking time of PV output power is 0.025 seconds in PBSMC under varying solar irradiance, however FOPID, PBC, EPBFOPID, have failed to converge fully. Similarly the dc link voltage has tracked the reference voltage in 0.05 seconds however the rest of the methods either could not converge, or converged after significant amount of time. During solar irradiance and temperature change, the photovoltaic output power has converged in 0.018 seconds using PBSMC, however remaining methods failed to converge or track fully and the dc link voltage has minimum tracking error due to PBSMC as compared to the other methods. Furthermore, the photovoltaic output power converges to the reference power in 0.1 seconds in power grid voltage drop, whereas other methods failed to converge fully. In addition power is also injected from the PV inverter into the grid at unity power factor
    • …
    corecore