6,816 research outputs found

    Reliable classification by unreliable crowds

    Full text link
    We consider the use of error-control codes and decoding algorithms to perform reliable classification using unreliable and anonymous human crowd workers by adapting coding-theoretic techniques for the specific crowdsourcing application. We develop an ordering principle for the quality of crowds and describe how system perfor-mance changes with the quality of the crowd. We demonstrate the effectiveness of the proposed coding scheme using both simulated data and real datasets from Amazon Mechanical Turk, a crowd-sourcing microtask platform. Results suggest that good codes may improve the performance of the crowdsourcing task over typical majority-vote approaches. Index Terms — crowdsourcing, classification, error-control code

    Supervised Collective Classification for Crowdsourcing

    Full text link
    Crowdsourcing utilizes the wisdom of crowds for collective classification via information (e.g., labels of an item) provided by labelers. Current crowdsourcing algorithms are mainly unsupervised methods that are unaware of the quality of crowdsourced data. In this paper, we propose a supervised collective classification algorithm that aims to identify reliable labelers from the training data (e.g., items with known labels). The reliability (i.e., weighting factor) of each labeler is determined via a saddle point algorithm. The results on several crowdsourced data show that supervised methods can achieve better classification accuracy than unsupervised methods, and our proposed method outperforms other algorithms.Comment: to appear in IEEE Global Communications Conference (GLOBECOM) Workshop on Networking and Collaboration Issues for the Internet of Everythin

    Modelling Instance-Level Annotator Reliability for Natural Language Labelling Tasks

    Full text link
    When constructing models that learn from noisy labels produced by multiple annotators, it is important to accurately estimate the reliability of annotators. Annotators may provide labels of inconsistent quality due to their varying expertise and reliability in a domain. Previous studies have mostly focused on estimating each annotator's overall reliability on the entire annotation task. However, in practice, the reliability of an annotator may depend on each specific instance. Only a limited number of studies have investigated modelling per-instance reliability and these only considered binary labels. In this paper, we propose an unsupervised model which can handle both binary and multi-class labels. It can automatically estimate the per-instance reliability of each annotator and the correct label for each instance. We specify our model as a probabilistic model which incorporates neural networks to model the dependency between latent variables and instances. For evaluation, the proposed method is applied to both synthetic and real data, including two labelling tasks: text classification and textual entailment. Experimental results demonstrate our novel method can not only accurately estimate the reliability of annotators across different instances, but also achieve superior performance in predicting the correct labels and detecting the least reliable annotators compared to state-of-the-art baselines.Comment: 9 pages, 1 figures, 10 tables, 2019 Annual Conference of the North American Chapter of the Association for Computational Linguistics (NAACL2019

    Time-Sensitive Bayesian Information Aggregation for Crowdsourcing Systems

    Get PDF
    Crowdsourcing systems commonly face the problem of aggregating multiple judgments provided by potentially unreliable workers. In addition, several aspects of the design of efficient crowdsourcing processes, such as defining worker's bonuses, fair prices and time limits of the tasks, involve knowledge of the likely duration of the task at hand. Bringing this together, in this work we introduce a new time--sensitive Bayesian aggregation method that simultaneously estimates a task's duration and obtains reliable aggregations of crowdsourced judgments. Our method, called BCCTime, builds on the key insight that the time taken by a worker to perform a task is an important indicator of the likely quality of the produced judgment. To capture this, BCCTime uses latent variables to represent the uncertainty about the workers' completion time, the tasks' duration and the workers' accuracy. To relate the quality of a judgment to the time a worker spends on a task, our model assumes that each task is completed within a latent time window within which all workers with a propensity to genuinely attempt the labelling task (i.e., no spammers) are expected to submit their judgments. In contrast, workers with a lower propensity to valid labeling, such as spammers, bots or lazy labelers, are assumed to perform tasks considerably faster or slower than the time required by normal workers. Specifically, we use efficient message-passing Bayesian inference to learn approximate posterior probabilities of (i) the confusion matrix of each worker, (ii) the propensity to valid labeling of each worker, (iii) the unbiased duration of each task and (iv) the true label of each task. Using two real-world public datasets for entity linking tasks, we show that BCCTime produces up to 11% more accurate classifications and up to 100% more informative estimates of a task's duration compared to state-of-the-art methods
    • …
    corecore