1,683 research outputs found

    Fog Computing: A Taxonomy, Survey and Future Directions

    Full text link
    In recent years, the number of Internet of Things (IoT) devices/sensors has increased to a great extent. To support the computational demand of real-time latency-sensitive applications of largely geo-distributed IoT devices/sensors, a new computing paradigm named "Fog computing" has been introduced. Generally, Fog computing resides closer to the IoT devices/sensors and extends the Cloud-based computing, storage and networking facilities. In this chapter, we comprehensively analyse the challenges in Fogs acting as an intermediate layer between IoT devices/ sensors and Cloud datacentres and review the current developments in this field. We present a taxonomy of Fog computing according to the identified challenges and its key features.We also map the existing works to the taxonomy in order to identify current research gaps in the area of Fog computing. Moreover, based on the observations, we propose future directions for research

    Role of Optical Network in Cloud/Fog Computing

    Get PDF
    This chapter is a study of exploring the role of the optical network in the cloud/fog computing environment. With the growing network issues, unified and cost-effective computing services and efficient utilization of optical resources are required for building smart applications. Fog computing provides the foundation platform for implementing cyber-physical system (CPS) applications which require ultra-low latency. Also, the digital revolution of fog/cloud computing using optical resources has upgraded the education system by intertwined VR using the fog nodes. Presently, the current technologies face many challenges such as ultra-low delay, optimum bandwidth, and minimum energy consumption to promote virtual reality (VR)-based and electroencephalogram (EEG)-based gaming applications. Ultra-low delay, optimum bandwidth, and minimum energy consumption. Therefore, an Optical-Fog layer is introduced to provide a novel, secure, highly distributed, and ultra-dense fog computing infrastructure. Also, for optimum utilization of optical resources, a novel concept of OpticalFogNode is introduced that provides computation and storage capabilities at the Optical-Fog layer in the software defined networking (SDN)-based optical network. It efficiently facilitates the dynamic deployment of new distributed SDN-based OpticalFogNode which supports low-latency services with minimum energy as well as bandwidth usage. Therefore, an EEG-based VR framework is also introduced that uses the resources of the optical network in the cloud/fog computing environment

    Edge/Fog Computing Technologies for IoT Infrastructure

    Get PDF
    The prevalence of smart devices and cloud computing has led to an explosion in the amount of data generated by IoT devices. Moreover, emerging IoT applications, such as augmented and virtual reality (AR/VR), intelligent transportation systems, and smart factories require ultra-low latency for data communication and processing. Fog/edge computing is a new computing paradigm where fully distributed fog/edge nodes located nearby end devices provide computing resources. By analyzing, filtering, and processing at local fog/edge resources instead of transferring tremendous data to the centralized cloud servers, fog/edge computing can reduce the processing delay and network traffic significantly. With these advantages, fog/edge computing is expected to be one of the key enabling technologies for building the IoT infrastructure. Aiming to explore the recent research and development on fog/edge computing technologies for building an IoT infrastructure, this book collected 10 articles. The selected articles cover diverse topics such as resource management, service provisioning, task offloading and scheduling, container orchestration, and security on edge/fog computing infrastructure, which can help to grasp recent trends, as well as state-of-the-art algorithms of fog/edge computing technologies

    Fog computing : enabling the management and orchestration of smart city applications in 5G networks

    Get PDF
    Fog computing extends the cloud computing paradigm by placing resources close to the edges of the network to deal with the upcoming growth of connected devices. Smart city applications, such as health monitoring and predictive maintenance, will introduce a new set of stringent requirements, such as low latency, since resources can be requested on-demand simultaneously by multiple devices at different locations. It is then necessary to adapt existing network technologies to future needs and design new architectural concepts to help meet these strict requirements. This article proposes a fog computing framework enabling autonomous management and orchestration functionalities in 5G-enabled smart cities. Our approach follows the guidelines of the European Telecommunications Standards Institute (ETSI) NFV MANO architecture extending it with additional software components. The contribution of our work is its fully-integrated fog node management system alongside the foreseen application layer Peer-to-Peer (P2P) fog protocol based on the Open Shortest Path First (OSPF) routing protocol for the exchange of application service provisioning information between fog nodes. Evaluations of an anomaly detection use case based on an air monitoring application are presented. Our results show that the proposed framework achieves a substantial reduction in network bandwidth usage and in latency when compared to centralized cloud solutions
    • …
    corecore