23,738 research outputs found

    Investigation of mixed element hybrid grid-based CFD methods for rotorcraft flow analysis

    Get PDF
    Accurate first-principles flow prediction is essential to the design and development of rotorcraft, and while current numerical analysis tools can, in theory, model the complete flow field, in practice the accuracy of these tools is limited by various inherent numerical deficiencies. An approach that combines the first-principles physical modeling capability of CFD schemes with the vortex preservation capabilities of Lagrangian vortex methods has been developed recently that controls the numerical diffusion of the rotor wake in a grid-based solver by employing a vorticity-velocity, rather than primitive variable, formulation. Coupling strategies, including variable exchange protocols are evaluated using several unstructured, structured, and Cartesian-grid Reynolds Averaged Navier-Stokes (RANS)/Euler CFD solvers. Results obtained with the hybrid grid-based solvers illustrate the capability of this hybrid method to resolve vortex-dominated flow fields with lower cell counts than pure RANS/Euler methods

    An efficient mixed variational reduced order model formulation for non-linear analyses of elastic shells

    Get PDF
    The Koiter-Newton method had recently demonstrated a superior performance for non-linear analyses of structures, compared to traditional path-following strategies. The method follows a predictor-corrector scheme to trace the entire equilibrium path. During a predictor step a reduced order model is constructed based on Koiter's asymptotic post-buckling theory which is followed by a Newton iteration in the corrector phase to regain the equilibrium of forces. In this manuscript, we introduce a robust mixed solid-shell formulation to further enhance the efficiency of stability analyses in various aspects. We show that a Hellinger-Reissner variational formulation facilitates the reduced order model construction omitting an expensive evaluation of the inherent fourth order derivatives of the strain energy. We demonstrate that extremely large step sizes with a reasonable out-of-balance residual can be obtained with substantial impact on the total number of steps needed to trace the complete equilibrium path. More importantly, the numerical effort of the corrector phase involving a Newton iteration of the full order model is drastically reduced thus revealing the true strength of the proposed formulation. We study a number of problems from engineering and compare the results to the conventional approach in order to highlight the gain in numerical efficiency for stability problems

    Imaginary-time formulation of steady-state nonequilibrium in quantum dot models

    Full text link
    We examine the recently proposed imaginary-time formulation for strongly correlated steady-state nonequilibrium for its range of validity and discuss significant improvements in the analytic continuation of the Matsubara voltage as well as the fermionic Matsubara frequency. The discretization error in the conventional Hirsch-Fye algorithm has been compensated in the Fourier transformation with reliable small frequency behavior of self-energy. Here we give detailed discussions for generalized spectral representation ansatz by including high order vertex corrections and its numerical analytic continuation procedures. The differential conductance calculations agree accurately with existing data from other nonequilibrium transport theories. It is verified that, at finite source-drain voltage, the Kondo resonance is destroyed at bias comparable to the Kondo temperature. Calculated coefficients in the scaling relation of the zero bias anomaly fall within the range of experimental estimates.Comment: 16 pages, 10 figures, Comparison to other theories adde

    Krylov-space approach to the equilibrium and the nonequilibrium single-particle Green's function

    Full text link
    The zero-temperature single-particle Green's function of correlated fermion models with moderately large Hilbert-space dimensions can be calculated by means of Krylov-space techniques. The conventional Lanczos approach consists of finding the ground state in a first step, followed by an approximation for the resolvent of the Hamiltonian in a second step. We analyze the character of this approximation and discuss a numerically exact variant of the Lanczos method which is formulated in the time domain. This method is extended to get the nonequilibrium single-particle Green's function defined on the Keldysh-Matsubara contour in the complex time plane. The proposed method will be important as an exact-diagonalization solver in the context of self-consistent or variational cluster-embedding schemes. For the recently developed nonequilibrium cluster-perturbation theory, we discuss the efficient implementation and demonstrate the feasibility of the Krylov-based solver. The dissipation of a strong local magnetic excitation into a non-interacting bath is considered as an example for applications.Comment: 20 pages, 5 figures, v2 with minor corrections, JPCM in pres

    Semianalytical calculation of the zonal-flow oscillation frequency in stellarators

    Full text link
    Due to their capability to reduce turbulent transport in magnetized plasmas, understanding the dynamics of zonal flows is an important problem in the fusion programme. Since the pioneering work by Rosenbluth and Hinton in axisymmetric tokamaks, it is known that studying the linear and collisionless relaxation of zonal flow perturbations gives valuable information and physical insight. Recently, the problem has been investigated in stellarators and it has been found that in these devices the relaxation process exhibits a characteristic feature: a damped oscillation. The frequency of this oscillation might be a relevant parameter in the regulation of turbulent transport, and therefore its efficient and accurate calculation is important. Although an analytical expression can be derived for the frequency, its numerical evaluation is not simple and has not been exploited systematically so far. Here, a numerical method for its evaluation is considered, and the results are compared with those obtained by calculating the frequency from gyrokinetic simulations. This "semianalytical" approach for the determination of the zonal-flow frequency reveals accurate and faster than the one based on gyrokinetic simulations.Comment: 30 pages, 14 figure

    Adversarial Training in Affective Computing and Sentiment Analysis: Recent Advances and Perspectives

    Get PDF
    Over the past few years, adversarial training has become an extremely active research topic and has been successfully applied to various Artificial Intelligence (AI) domains. As a potentially crucial technique for the development of the next generation of emotional AI systems, we herein provide a comprehensive overview of the application of adversarial training to affective computing and sentiment analysis. Various representative adversarial training algorithms are explained and discussed accordingly, aimed at tackling diverse challenges associated with emotional AI systems. Further, we highlight a range of potential future research directions. We expect that this overview will help facilitate the development of adversarial training for affective computing and sentiment analysis in both the academic and industrial communities
    corecore