45 research outputs found

    Multiphysics processes in solid thermal energy storage

    Get PDF
    Um die zuverlässige Integration von Solarthermieanwendungen (ST), z.B. konzentrierte Solarenergie (concentrating solar power, CSP) bei steigendem Energiebedarf und trotz des fluktuierenden Charakters von ST zu ermöglichen, werden thermische Energiespeichertechnologien (TES) als attraktive Lösungen eingesetzt, um ST-basierte Systeme auf dem Energiemarkt wettbewerbsfähiger zu machen. Darüber hinaus werden Feststoff-TES-Systeme als vielversprechende Alternative zu herkömmlichen Flüssigkeitsspeicherlösungen betrachtet, um die Investitionskosten für die TES-Einheit weiter zu senken. Sowohl aus technischer als auch aus kommerzieller Sicht können sie vorteilhaft mittels der Komponentenfertigung bis hin zum kompletten modularen Aufbau ausgelegt werden, um die vorgesehene Beladungsmenge für verschiedene Leistungsbereiche von CSP-Anlagen abzudecken. Die erfolgreiche Integration von feststoffbasierten, sensiblen Wärmespeichern (SWS) in Parabolrinnen-Kraftwerken hat sich in den letzten zehn Jahren bewährt. Gegenwärtig gewinnt die TES-Technologie für niedrige Temperaturen neben Hochtemperaturanwendungen zur Stromerzeugung zunehmend an Bedeutung. Dies bietet die Möglichkeit, neue gemischte Feststoff-Flüssigkeits-Speichermaterialien zu entwickeln, um die Wärmespeicherdichte zu erhöhen, wie hier am Beispiel eines neuartigen, wassergesättigten zementartigen Materials demonstriert wird, das im Rahmen eines nationalen Projekts zur Speicherung von mit Solarkollektoren gewonnener Energie (IGLU-Projekt) entwickelt wurde. Wegen typischer Eigenschaften der Feststoffe müssen jedoch wichtige spezifische Probleme gelöst werden, um die Leistungsfähigkeit und Stabilität von festen TES-Systemen über einen langen Zeitraum zu gewährleisten. Die gegenwärtigen Bemühungen von Wissenschaft und Industrie konzentrieren sich auf thermische Aspekte als zentrales Hauptanliegen. Feststoffbasierte TES sind jedoch multiphysikalischen Prozessen unterworfen, d.h. das thermische Verhalten ist ein Produkt der gegenseitigen Wechselwirkung mehrerer beteiligter physikalischer Felder und beeinflusst selbst wiederum diese Felder. Das damit verbundene mechanische Verhalten der Wärmespeicherkomponenten hat einen großen Einfluss auf die Zuverlässigkeit und Haltbarkeit des Systems sowie die thermische Leistung, da mögliche Strukturschäden den Wärmetransport durch die TES-Struktur erheblich beeinflussen und die Integrität der Struktur selbst gefährden können. Die Motivation dieses Beitrags liegt in der Entwicklung eines innovativen feststoffbasierten TES-Moduls (IGLU TES) für das oben genannte IGLU-Projekt. Ziel dieses Beitrags ist es, die Leistungsfähigkeit und Integrität von feststoffbasierten TES mit Röhrenwärmetauschern unter multiphysikalischen Bedingungen zu untersuchen, um insbesondere die Möglichkeiten und Folgen eines Versagens durch mechanische Schädigung oder thermische Degradation zu identifizieren. Die Arbeit geht von einer verallgemeinerten thermo-hydro-mechanischen (THM) Analyse des IGLU TES aus, um einen ersten Einblick in die Kopplungseffekte zwischen den verschiedenen physikalischen Feldern und deren relative Bedeutung zu gewinnen. Kritische Bereiche in den Zonen um den Röhrenwärmetauscher werden dann anhand der sich einstellenden Spannungsfelder als kritisch identifiziert, da sie die strukturelle Integrität des Speichermoduls beeinträchtigen können, indem in diesen Zonen die Festigkeit charakterisierende oder bruchmechanische Kriterien überschritten werden. Die so ermittelten kritischen Bereiche erlauben eine vertiefte, strukturspezifische Analyse eines feststoffbasierten TES mit eingebetteten Röhrenwärmetauschern. Insbesondere wird ein analytischer Ansatz vorgeschlagen, indem geeignete Vereinfachungen auf der Grundlage der vorangegangenen numerischen Analysen vorgenommen werden, um eine robuste Analyse derjenigen materialspezifischen und geometrischen Größen durchzuführen, die den größten Einfluss auf die strukturelle Zuverlässigkeit des Speichermoduls ausüben. Die abgeleitete analytische Lösung kann zur Quantifizierung der Abhängigkeit kritischer Spannungen von mehreren Systemparametern, Materialkennwerten und Geometriegrößen herangezogen werden, um unter gewählten Gesichtspunkten eine Systemoptimierung mit großer Designflexibilität für die Speicherkonfiguration durchzuführen. Der analytische Ansatz erfordert nur minimalen Aufwand und eignet sich für frühe Designphasen. Dabei zeigte sich, dass das Risiko von Material- und Strukturversagen auch bei optimaler Auslegung nicht beliebig reduziert werden kann. Daher wird ein Phasenfeld-Ansatz zur Modellierung von Risswachstumsprozessen entwickelt, um wahrscheinliche Schädigungsmuster zu erfassen, die durch die Nichtübereinstimmung der thermischen Ausdehnungskoeffizienten der Systemkomponenten verursacht werden, und den Einfluss der resultierenden Risstopologien auf das thermische Verhalten eines festen TES-Systems zu quantifizieren. Der vorgeschlagene Phasenfeldansatz, formuliert innerhalb eines gekoppelten thermomechanischen Ansatzes, wird auf zwei repräsentative feste SWS-Konfigurationen angewendet, die sich sowohl hinsichtlich des Speichermediums als auch der Speichertemperatur unterscheiden. Innerhalb des Festkörpers wird ein Bruchvorgang beobachtet und die daraus resultierende thermische Leistungsabnahme durch eine Wärmetransportbehinderung in Abhängigkeit des eingeschlossenen flüssigen Mediums mit potentiell niedriger Wärmeleitfähigkeit untersucht, was zu erheblichen Schwankungen der Heizleistung in einem laufenden System führen kann

    SOLID-SHELL FINITE ELEMENT MODELS FOR EXPLICIT SIMULATIONS OF CRACK PROPAGATION IN THIN STRUCTURES

    Get PDF
    Crack propagation in thin shell structures due to cutting is conveniently simulated using explicit finite element approaches, in view of the high nonlinearity of the problem. Solidshell elements are usually preferred for the discretization in the presence of complex material behavior and degradation phenomena such as delamination, since they allow for a correct representation of the thickness geometry. However, in solid-shell elements the small thickness leads to a very high maximum eigenfrequency, which imply very small stable time-steps. A new selective mass scaling technique is proposed to increase the time-step size without affecting accuracy. New ”directional” cohesive interface elements are used in conjunction with selective mass scaling to account for the interaction with a sharp blade in cutting processes of thin ductile shells

    Non degenerate anisotropic green's function for 3D magneto-electro-elasticity and bem shape sensitivity framework for 3D contact in anisotropic elasticity

    Get PDF
    The first part of the thesis presents a new expression for the magneto electro elastic (MEE) fundamental solution which is explicit in terms of the Stroh’s eigenvalues, remains welldefined for repeated Stroh’s eigenvalues and is exact. We then define a fast and robust numerical scheme to evaluate the function and its derivatives based on a double Fourier series representation. These newly developed expressions allow to compute the Fourier coefficients for any material symmetry or anisotropy, and is done only once for a given material. One evaluates the Green’s function and its derivatives through simple trigonometric formulas. Several results are presented for elastic, piezoelectric/piezomagnetic and magneto-eletro-elastic materials. The second part of the thesis provides a BEM-based formulation for shape sensitivity analysis of anisotropic elastic media, also including contact conditions, and based on the newly presented Green’s functions. The parameter sensitivity is evaluated using the complex step (CS) method: An approach similar to finite differentiation (FD), with the advantage of being step-size independent, therefore an extremely robust method. A convergence study on shape sensitivity is provided, proving the efficiency of the CS-BEM approach. We solve Hertz and non-Hertzian type contact problems as well as an application example of a dovetail joint found in gas turbines. We analyzed several parmeter sensitivities to shape variation, such as contact pressure, shear stress, as well as Von Mises stress, for both isotropic and anisotropic materials. The results showed good agreement with analytical solutions, as well as other works from the literature. In comparison with FD, which did not converged for an example case, the CS method showed excellent stability and precision for a broad range of step sizes.A primeira parte da tese apresenta uma nova expressão para a solução fundamental Magneto-Eletro-Elástica explícita em termos de autovalores de Stroh, bem definida para autovalores repetidos, e exata. Em seguida, uma série de Fourier dupla é utilizada como uma forma rápida e robusta para avaliar a solução fundamental e as suas derivadas. As expressões recém-desenvolvidas permitem calcular os coeficientes de Fourier para qualquer simetria ou anisotropia de material, o que é feito apenas uma vez para um dado material. Diversos resultados são apresentados para materiais elásticos, piezoelétricos e magneto-eletro-elásticos. A segunda parte desta tese apresenta uma formulação completa para análise de sensibilidade em estruturas elasticas anisotrópicas baseada nestas funções de Green recém apresentadas, incluindo condições de contato. A sensibilidade à parâmetros é avaliada utilizando o método do incremento complexo, método extremamente robusto, similar a diferenciação finita (FD), mas independente do tamanho do incremento. Problemas de contato de Hertz e não Hertzianos foram resolvidos, assim como um estudo de aplicação de uma palheta de turbinas a gás. Foi avaliada a sensibilidade à variação de forma das tensões de contato, tensões cisalhantes máximas e também nas tensões equivalentes de Von Mises, em diferentes materiais anisotrópicos. Os resultados mostraram boa correlação com soluções analíticas assim como em outros trabalhos da literatura. Quando comparado com FD, que não obteve convergência em um dos exemplos, o método CS demonstrou excelente estabilidade e precisão para uma larga faixa de tamanhos de incremento

    5th EUROMECH nonlinear dynamics conference, August 7-12, 2005 Eindhoven : book of abstracts

    Get PDF

    5th EUROMECH nonlinear dynamics conference, August 7-12, 2005 Eindhoven : book of abstracts

    Get PDF

    On friction in forming : an experimental-numerical method to quantify contact behaviour

    Get PDF
    xii+138hlm.;24c

    Nanoindentation testing of soft polymers : computation, experiments and parameters identification

    Get PDF
    Since nanoindentation technique is able to measure the mechanical properties of extremely thin layers and small volumes with high resolution, it also became one of the important testing techniques for thin polymer layers and coatings. This dissertation is focusing on the characterization of polymers using nanoindentation, which is dealt with numerical computation, experiments and parameters identification. An analysis procedure is developed with the FEM based inverse method to evaluate the hyperelasticity and time-dependent properties. This procedure is firstly verified with a parameters re-identification concept. An important issue in this dissertation is to take the error contributions in real nanoindentation experiments into account. Therefore, the effects of surface roughness, adhesion force, friction and the real shape of the tip are involved in the numerical model to minimize the systematic error between the experimental responses and the numerical predictions. The effects are quantified as functions or models with corresponding parameters to be identified. Finally, data from uniaxial or biaxial tensile tests and macroindentation tests are taken into account. The comparison of these different loading situations provides a validation of the proposed material model and a deep insight into nanoindentation of polymers.Da Nanoindentation die Messung der mechanischen Eigenschaften von dünnen Schichten und kleinen Volumen mit hoher Auflösung ermöglicht, hat sich diese Messmethode zu einer der wichtigsten Testmethoden für dünne Polymerschichten und -beschichtungen entwickelt. Diese Dissertation konzentriert sich auf die Charakterisierung von Polymeren mittels Nanoindentation, die in Form von numerischen Berechnungen, Experimenten und Parameteridentifikationen behandelt wird. Es wurde ein Auswertungsverfahren mit einer FEM basierten inversen Methode zur Berechnung der Hyperelastizität und der zeitabhängigen Eigenschaften entwickelt. Dieses Verfahren wird zunächst mit einem Konzept der Parameter Re-Identifikation verifiziert. Fehlerquellen wie Oberflächenrauheit, Adhäsionskräfte, Reibung und die tatsächlichen Form der Indenterspitze werden in das numerische Modell eingebunden, um die Abweichungen der numerischen Vorhersagen von den experimentellen Ergebnissen zu minimieren. Diese Einflüsse werden als Funktionen oder Modelle mit dazugehörigen, zu identifizierenden Parametern, quantifiziert. Abschließend werden Messwerte aus uni- oder biaxialen Zugversuchen und Makroindentationsversuchen betrachtet. Der Vergleich dieser verschiedenen Belastungszustände liefert eine Bestätigung des vorgeschlagenen Materialmodells und verschafft einen tieferen Einblick in die bei der Nanoindentation von Polymeren ablaufenden Mechanismen
    corecore