141 research outputs found

    Reliable Reporting for Massive M2M Communications with Periodic Resource Pooling

    Get PDF
    This letter considers a wireless M2M communication scenario with a massive number of M2M devices. Each device needs to send its reports within a given deadline and with certain reliability, e. g. 99.99%. A pool of resources available to all M2M devices is periodically available for transmission. The number of transmissions required by an M2M device within the pool is random due to two reasons - random number of arrived reports since the last reporting opportunity and requests for retransmission due to random channel errors. We show how to dimension the pool of M2M-dedicated resources in order to guarantee the desired reliability of the report delivery within the deadline. The fact that the pool of resources is used by a massive number of devices allows to base the dimensioning on the central limit theorem. The results are interpreted in the context of LTE, but they are applicable to any M2M communication system.Comment: Submitted to journa

    What Can Wireless Cellular Technologies Do about the Upcoming Smart Metering Traffic?

    Full text link
    The introduction of smart electricity meters with cellular radio interface puts an additional load on the wireless cellular networks. Currently, these meters are designed for low duty cycle billing and occasional system check, which generates a low-rate sporadic traffic. As the number of distributed energy resources increases, the household power will become more variable and thus unpredictable from the viewpoint of the Distribution System Operator (DSO). It is therefore expected, in the near future, to have an increased number of Wide Area Measurement System (WAMS) devices with Phasor Measurement Unit (PMU)-like capabilities in the distribution grid, thus allowing the utilities to monitor the low voltage grid quality while providing information required for tighter grid control. From a communication standpoint, the traffic profile will change drastically towards higher data volumes and higher rates per device. In this paper, we characterize the current traffic generated by smart electricity meters and supplement it with the potential traffic requirements brought by introducing enhanced Smart Meters, i.e., meters with PMU-like capabilities. Our study shows how GSM/GPRS and LTE cellular system performance behaves with the current and next generation smart meters traffic, where it is clearly seen that the PMU data will seriously challenge these wireless systems. We conclude by highlighting the possible solutions for upgrading the cellular standards, in order to cope with the upcoming smart metering traffic.Comment: Submitted; change: corrected location of eSM box in Fig. 1; May 22, 2015: Major revision after review; v4: revised, accepted for publicatio

    Reliable Radio Access for Massive Machine-to-Machine (M2M) Communication

    Get PDF

    Reliable and Efficient Access for Alarm-initiated and Regular M2M Traffic in IEEE 802.11ah Systems

    Get PDF
    EEE 802.11ah is a novel WiFi-based protocol, aiming to provide an access solution for the machine-to-machine (M2M) communications. In this paper, we propose an adaptive access mechanism that can be seamlessly incorporated into IEEE 802.11ah protocol operation and that supports all potential M2M reporting regimes, which are periodic, on-demand We show that it is possible to both efficiently and reliably resolve all reporting stations in the cell, within the limits of the allowed deadlines. As a side result, we also provide a rationale for modeling the inter-arrival time in alarm events by using the Beta distribution, a model that is considered in the 3GPP standardization.Comment: Appeared in IEEE IoT Journal, October 201

    Traffic classification and prediction, and fast uplink grant allocation for machine type communications via support vector machines and long short-term memory

    Get PDF
    Abstract. The current random access (RA) allocation techniques suffer from congestion and high signaling overhead while serving machine type communication (MTC) applications. Therefore, 3GPP has introduced the need to use fast uplink grant (FUG) allocation. This thesis proposes a novel FUG allocation based on support vector machine (SVM) and long short-term memory (LSTM). First, MTC devices are prioritized using SVM classifier. Second, LSTM architecture is used to predict activation time of each device. Both results are used to achieve an efficient resource scheduler in terms of the average latency and total throughput. Furthermore, a set of correction techniques is introduced to overcome the classification and prediction errors. The Coupled Markov Modulated Poisson Process (CMMPP) traffic model is applied to compare the proposed FUG allocation to other existing allocation techniques. In addition, an extended traffic model based CMMPP is used to evaluate the proposed algorithm in a more dense network. Our simulation results show the proposed model outperforms the existing RA allocation schemes by achieving the highest throughput and the lowest access delay when serving the target massive and critical MTC applications

    A Framework for Ultra Reliable Low Latency Mission Critical Communication

    Get PDF
    Title from PDF of title page viewed June 22, 2017Thesis advisor: Cory BeardVitaIncludes bibliographical references (pages 26-29)Thesis (M.S.)--School of Computing and Engineering. University of Missouri--Kansas City, 2017Mission-critical communication is one of the central design aspects of 5G communications. But there are numerous challenges and explicit requirements for development of a successful mission-critical communication system. Reliability and delay optimization are the two most crucial among them. Achieving reliability is influenced by several difficulties, including but not limited to fading, mobility, interference, and inefficient resource utilization. Achieving reliability may cost one of the most critical features of mission critical communication, which is delay. This thesis discusses possible strategies to achieve reliability in a mission-critical network. Based on the strategies, a framework for a reliable mission-critical system has also been proposed. A simulation study of the effects of different pivotal factors that affect communication channel is described. This study provides a better understanding of the requirements for improving the reliability of a practical communication system.Introduction -- Related works -- Case studies for mission critical communication -- Strategies to achieve ultra-reliable M2M -- Adaptive mimo system with OSTBC -- Simulation results -- Conclusions and future aspect
    • …
    corecore