64 research outputs found

    LTE Frequency Hopping Jammer

    Get PDF
    The goal of this project was to show that communication with a cellular base station and user equipment could be interfered with using narrowband jamming. Specifically, a randomized frequency hopping jammer was used as the main method to disrupt service. The testbed was built with OpenAirInterface, software-defined radios, and a Samsung s4 phone. It was found to be possible to greatly disrupt communications in an LTE system with a jammer

    Joint Detection and Decoding of High-Order Modulation Schemes for CDMA and OFDM Wireless Communications

    Get PDF
    Wireless communications call for high data rate, power and bandwidth efficient transmissions. High-order modulation schemes are suitable candidates for this purpose as the potential to reduce the symbol period is often limited by the multipath-induced intersymbol interference. In order to reduce the power consumption, and at the same time, to estimate time-variant wireless channels, we propose low-complexity, joint detection and decoding schemes for high-order modulation signals in this dissertation. We start with the iterative demodulation and decoding of high-order CPM signals for mobile communications. A low complexity, pilot symbol-assisted coherent modulation scheme is proposed that can significantly improve the bit error rate performance by efficiently exploiting the inherent memory structure of the CPM modulation. A noncoherent scheme based on multiple symbol differential detection is also proposed and the performances of the two schemes are simulated and compared. Second, two iterative demodulation and decoding schemes are proposed for quadrature amplitude modulated signals in flat fading channels. Both of them make use of the iterative channel estimation based on the data signal reconstructed from decoder output. The difference is that one of them has a threshold controller that only allows the data reconstructed with high reliability values to be used for iterative channel estimation, while the other one directly uses all reconstructed data. As the second scheme has much lower complexity with a performance similar to the best of the first one, we further apply it to the space-time coded CDMA Rake receiver in frequency-selective multipath channels. We will compare it to the pilot-aided demodulation scheme that uses a dedicated pilot signal for channel estimation. In the third part of the dissertation, we design anti-jamming multicarrier communication systems. Two types of jamming signals are considered - the partial-band tone jamming and the partial-time pulse jamming. We propose various iterative schemes to detect, estimate, and cancel the jamming signal in both AWGN and fading channels. Simulation results demonstrate that the proposed systems can provide reliable communications over a wide range of jamming-to-signal power ratios. Last, we study the problem of maximizing the throughput of a cellular multicarrier communication network with transmit or receive diversity. The total throughput of the network is maximized subject to power constraints on each mobile. We first extend the distributed water-pouring power control algorithm from single transmit and receive antenna to multiple transmit and receive antennas. Both equal power diversity and selective diversity are considered. We also propose a centralized power control algorithm based on the active set strategy and the gradient projection method. The performances of the two algorithms are assessed with simulation and compared with the equal power allocation algorithm

    Electronic countermeasures applied to passive radar

    Get PDF
    Passive Radar (PR) is a form of bistatic radar that utilises existing transmitter infrastructure such as FM radio, digital audio and video broadcasts (DAB and DVB-T/T2), cellular base station transmitters, and satellite-borne illuminators like DVB-S instead of a dedicated radar transmitter. Extensive research into PR has been performed over the last two decades across various industries with the technology maturing to a point where it is becoming commercially viable. Nevertheless, despite the abundance of PR literature, there is a scarcity of open literature pertaining to electronic countermeasures (ECM) applied to PR. This research makes the novel contribution of a comprehensive exploration and validation of various ECM techniques and their effectiveness when applied to PR. Extensive research has been conducted to assess the inherent properties of the lluminators of Opportunity to identify their possible weaknesses for the purpose of applying targeted ECM. Similarly, potential jamming signals have also been researched to evaluate their effectiveness as bespoke ECM signals. Whilst different types of PR exist, this thesis focuses specifically on ECM applied to FM radio and DVB-T2 based PR. The results show noise jamming to be effective against FM radio based PR where jamming can be achieved with relatively low jamming power. A waveform study is performed to determine the optimal jamming waveform for an FM radio based PR. The importance of an effective direct signal interference (DSI) canceller is also shown as a means of suppressing the jamming signal. A basic overview of counter-ECM (ECCM) is discussed to counter potential jamming of FM based PR. The two main processing techniques for DVB-T2 based PR, mismatched and inverse filtering, have been investigated and their performance in the presence of jamming evaluated. The deterministic components of the DVB-T2 waveform are shown to be an effective form of attack for both mismatched filtering and inverse filtering techniques. Basic ECCM is also presented to counter potential pilot attacks on DVB-T2 based PR. Using measured data from a PR demonstrator, the application and effectiveness of each jamming technique is clearly demonstrated, evaluated and quantified

    Performance of IEEE 802.11a wireless LAN standard over frequency-selective, slowly fading Nakagami channels in a pulsed jamming environment

    Get PDF
    Wireless local area networks (WLAN) are increasingly important in meeting the needs of the next generation broadband wireless communication systems for both commercial and military applications. In 1999, the Institute of the Electrical and Electronics Engineers (IEEE) 802.11a working group approved a standard for a 5 GHz band WLAN that supports a variable bit rate from 6 to 54 Mbps, and orthogonal frequency-division multiplexing (OFDM) was chosen because of its well-known ability to avoid multipath effects while achieving high data rates by combining a high order sub-carrier modulation with a high rate convolutional code. This thesis investigates the performance of the OFDM based IEEE.802.11a WLAN standard in frequency-selective, slowly fading Nakagami channels in a pulsed-noise jamming environment. Contrary to expectations, the signal-to-interference ratio (SIR) required to achieve a specific does not monotonically decrease when the bit rate decreases. Furthermore, the results show that the performance is improved significantly by adding convolutional coding with Viterbi decoding, and thus highlights the importance of forward error correction (FEC) coding to the performance of wireless communications systems.http://archive.org/details/performanceofiee109453638Lieutenant Junior Grade, Turkish NavyApproved for public release; distribution is unlimited

    Scalable System Design for Covert MIMO Communications

    Get PDF
    In modern communication systems, bandwidth is a limited commodity. Bandwidth efficient systems are needed to meet the demands of the ever-increasing amount of data that users share. Of particular interest is the U.S. Military, where high-resolution pictures and video are used and shared. In these environments, covert communications are necessary while still providing high data rates. The promise of multi-antenna systems providing higher data rates has been shown on a small scale, but limitations in hardware prevent large systems from being implemented

    Secure OFDM System Design for Wireless Communications

    Get PDF
    Wireless communications is widely employed in modern society and plays an increasingly important role in people\u27s daily life. The broadcast nature of radio propagation, however, causes wireless communications particularly vulnerable to malicious attacks, and leads to critical challenges in securing the wireless transmission. Motivated by the insufficiency of traditional approaches to secure wireless communications, physical layer security that is emerging as a complement to the traditional upper-layer security mechanisms is investigated in this dissertation. Five novel techniques toward the physical layer security of wireless communications are proposed. The first two techniques focus on the security risk assessment in wireless networks to enable a situation-awareness based transmission protection. The third and fourth techniques utilize wireless medium characteristics to enhance the built-in security of wireless communication systems, so as to prevent passive eavesdropping. The last technique provides an embedded confidential signaling link for secure transmitter-receiver interaction in OFDM systems
    • …
    corecore