150,820 research outputs found

    A Novel Approach for Effective Multi-View Clustering with Information-Theoretic Perspective

    Full text link
    Multi-view clustering (MVC) is a popular technique for improving clustering performance using various data sources. However, existing methods primarily focus on acquiring consistent information while often neglecting the issue of redundancy across multiple views. This study presents a new approach called Sufficient Multi-View Clustering (SUMVC) that examines the multi-view clustering framework from an information-theoretic standpoint. Our proposed method consists of two parts. Firstly, we develop a simple and reliable multi-view clustering method SCMVC (simple consistent multi-view clustering) that employs variational analysis to generate consistent information. Secondly, we propose a sufficient representation lower bound to enhance consistent information and minimise unnecessary information among views. The proposed SUMVC method offers a promising solution to the problem of multi-view clustering and provides a new perspective for analyzing multi-view data. To verify the effectiveness of our model, we conducted a theoretical analysis based on the Bayes Error Rate, and experiments on multiple multi-view datasets demonstrate the superior performance of SUMVC

    DealMVC: Dual Contrastive Calibration for Multi-view Clustering

    Full text link
    Benefiting from the strong view-consistent information mining capacity, multi-view contrastive clustering has attracted plenty of attention in recent years. However, we observe the following drawback, which limits the clustering performance from further improvement. The existing multi-view models mainly focus on the consistency of the same samples in different views while ignoring the circumstance of similar but different samples in cross-view scenarios. To solve this problem, we propose a novel Dual contrastive calibration network for Multi-View Clustering (DealMVC). Specifically, we first design a fusion mechanism to obtain a global cross-view feature. Then, a global contrastive calibration loss is proposed by aligning the view feature similarity graph and the high-confidence pseudo-label graph. Moreover, to utilize the diversity of multi-view information, we propose a local contrastive calibration loss to constrain the consistency of pair-wise view features. The feature structure is regularized by reliable class information, thus guaranteeing similar samples have similar features in different views. During the training procedure, the interacted cross-view feature is jointly optimized at both local and global levels. In comparison with other state-of-the-art approaches, the comprehensive experimental results obtained from eight benchmark datasets provide substantial validation of the effectiveness and superiority of our algorithm. We release the code of DealMVC at https://github.com/xihongyang1999/DealMVC on GitHub

    Pedestrian detection in uncontrolled environments using stereo and biometric information

    Get PDF
    A method for pedestrian detection from challenging real world outdoor scenes is presented in this paper. This technique is able to extract multiple pedestrians, of varying orientations and appearances, from a scene even when faced with large and multiple occlusions. The technique is also robust to changing background lighting conditions and effects, such as shadows. The technique applies an enhanced method from which reliable disparity information can be obtained even from untextured homogeneous areas within a scene. This is used in conjunction with ground plane estimation and biometric information,to obtain reliable pedestrian regions. These regions are robust to erroneous areas of disparity data and also to severe pedestrian occlusion, which often occurs in unconstrained scenarios

    Radio Galaxy Detection in the Visibility Domain

    Get PDF
    We explore a new Bayesian method of detecting galaxies from radio interferometric data of the faint sky. Working in the Fourier domain, we fit a single, parameterised galaxy model to simulated visibility data of star-forming galaxies. The resulting multimodal posterior distribution is then sampled using a multimodal nested sampling algorithm such as MultiNest. For each galaxy, we construct parameter estimates for the position, flux, scale-length and ellipticities from the posterior samples. We first test our approach on simulated SKA1-MID visibility data of up to 100 galaxies in the field of view, considering a typical weak lensing survey regime (SNR 10\ge 10) where 98% of the input galaxies are detected with no spurious source detections. We then explore the low SNR regime, finding our approach reliable in galaxy detection and providing in particular high accuracy in positional estimates down to SNR 5\sim 5. The presented method does not require transformation of visibilities to the image domain, and requires no prior knowledge of the number of galaxies in the field of view, thus could become a useful tool for constructing accurate radio galaxy catalogs in the future.Comment: 11 pages, 11 figures. Accepted for publication in MNRA

    From Data Topology to a Modular Classifier

    Full text link
    This article describes an approach to designing a distributed and modular neural classifier. This approach introduces a new hierarchical clustering that enables one to determine reliable regions in the representation space by exploiting supervised information. A multilayer perceptron is then associated with each of these detected clusters and charged with recognizing elements of the associated cluster while rejecting all others. The obtained global classifier is comprised of a set of cooperating neural networks and completed by a K-nearest neighbor classifier charged with treating elements rejected by all the neural networks. Experimental results for the handwritten digit recognition problem and comparison with neural and statistical nonmodular classifiers are given
    corecore