729 research outputs found

    Wireless Sensor Needs Defined by SBIR Topics

    Get PDF
    This slide presentation reviews the needs for wireless sensor technology from various U.S. government agencies as exhibited by an analysis of Small Business Innovation Research (SBIR) solicitations. It would appear that a multi-agency group looking at overlapping wireless sensor needs and technology projects is desired. Included in this presentation is a review of the NASA SBIR process, and an examination of some of the SBIR projects from NASA, and other agencies that involve wireless sensor developmen

    The Pierre Auger Observatory: Contributions to the 34th International Cosmic Ray Conference (ICRC 2015)

    Get PDF
    Contributions of the Pierre Auger Collaboration to the 34th International Cosmic Ray Conference, 30 July - 6 August 2015, The Hague, The NetherlandsComment: 24 proceedings, the 34th International Cosmic Ray Conference, 30 July - 6 August 2015, The Hague, The Netherlands; will appear in PoS(ICRC2015

    Searches for Fast Radio Bursts using Machine Learning

    Get PDF
    Fast Radio bursts (FRBs) are enigmatic astrophysical events with millisecond durations and flux densities in the range 0.1-100 Jy, with the prototype source discovered by Lorimer et al. (2007). Like pulsars, FRBs show the characteristic inverse square sweep in observing frequency due to propagation through an ionized medium. This effect is quantified by the dispersion measure (DM). Unlike pulsars, FRBs have anomalously high DMs, which are consistent with an extragalactic origin. Over 100 FRBs have been published at the time of writing, and 13 have been conclusively identified with host galaxies with spectroscopically determined redshifts in the range 0.003 ≤ z ≤ 0.66. Detection of FRBs requires data at radio frequencies to be de-dispersed at many trial DM values. Incoming radio telescope data are appropriately combined for each DM to form a time series that is then searched using matched filters to find events above a certain signal-to-noise threshold. In the past, diagnostic plots showing these events are most commonly inspected by humans to determine if they are of astrophysical origin. With ongoing FRB surveys producing millions of candidates, machine learning algorithms for candidate classification are now necessary. In this thesis, we present state-of-the-art deep neural networks to classify FRB candidates and events produced by radio frequency interference (RFI). We present 11 deep learning models named FETCH, each with accuracy and recall above 99.5% as determined using a dataset comprising real RFI and pulsar candidates. These algorithms are telescope and frequency agnostic and can correctly classify all FRBs with signal-to-noise ratios above 10 in datasets collected with the Parkes telescope and the Australian Square Kilometre Array Pathfinder (ASKAP). We present the design, deployment, and initial results from the real-time commensal FRB search pipeline at the Robert C. Byrd Green Bank Telescope (GBT) named GREENBURST. The pipeline uses FETCH to winnow down the vast number of false-positive single-pulse candidates that mostly result from RFI. In our observations totaling 276 days so far, we have detected individual pulses from 20 known radio pulsars, which provide excellent verification of the system performance. Although no FRBs have been detected to date, we have used our results to update the analysis of Lawrence et al. (2017) to constrain the FRB all-sky rate to be 1140+200-180 per day above a peak flux density of 1 Jy. We also constrain the source count index α = 0.84 ± 0.06, substantially flatter than expected from a Euclidean distribution of standard candles (where α =1.5). We make predictions for detection rates with GREENBURST as well as other ongoing and planned FRB experiments. Lastly, we present the discovery of FRB 180417 through a targeted search for faint FRBs near the core of the Virgo cluster using ASKAP. Several radio telescopes promptly followed up the FRB for a total of 27 h, but no repeat bursts were detected. An optical follow-up of FRB 180417 using the PROMPT5 telescope revealed no new sources down to an R-band magnitude of 20.1. We argue that FRB 180417 is likely behind the Virgo cluster as the Galactic and intracluster DM contributions are small compared to the DM of the FRB, and there are no galaxies in the line of sight. Adopting an FRB rate of 103 FRBs sky-1day-1 with flux above 1 Jy out to z=1, our non-detection of FRBs from Virgo constrains (at 68 % confidence limit) the faint-end slope of the luminosity function Lmin ≥ 6.5 × 1039 erg s-1

    Marshall Space Flight Center Faculty Fellowship Program

    Get PDF
    The 2017 Marshall Faculty Fellowship Program involved 21 faculty in the laboratories and departments at Marshall Space Flight Center. These faculty engineers and scientists worked with NASA collaborators on NASA projects, bringing new perspectives and solutions to bear. This Technical Memorandum is a compilation of the research reports of the 2017 Marshall Faculty Fellowship program, along with the Program Announcement (Appendix A) and the Program Description (Appendix B). The research affected the following six areas: (1) Materials (2) Propulsion (3) Instrumentation (4) Spacecraft systems (5) Vehicle systems (6) Space science The materials investigations included composite structures, printing electronic circuits, degradation of materials by energetic particles, friction stir welding, Martian and Lunar regolith for in-situ construction, and polymers for additive manufacturing. Propulsion studies were completed on electric sails and low-power arcjets for use with green propellants. Instrumentation research involved heat pipes, neutrino detectors, and remote sensing. Spacecraft systems research was conducted on wireless technologies, layered pressure vessels, and two-phase flow. Vehicle systems studies were performed on life support-biofilm buildup and landing systems. In the space science area, the excitation of electromagnetic ion-cyclotron waves observed by the Magnetospheric Multiscale Mission provided insight regarding the propagation of these waves. Our goal is to continue the Marshall Faculty Fellowship Program funded by Center internal project offices. Faculty Fellows in this 2017 program represented the following minority-serving institutions: Alabama A&M University and Oglala Lakota College

    Nanosecond level time synchronization of distributed radio detectors

    Get PDF

    Air Force Institute of Technology Research Report 2014

    Get PDF
    This report summarizes the research activities of the Air Force Institute of Technology’s Graduate School of Engineering and Management. It describes research interests and faculty expertise; lists student theses/dissertations; identifies research sponsors and contributions; and outlines the procedures for contacting the school. Included in the report are: faculty publications, conference presentations, consultations, and funded research projects. Research was conducted in the areas of Aeronautical and Astronautical Engineering, Electrical Engineering and Electro-Optics, Computer Engineering and Computer Science, Systems Engineering and Management, Operational Sciences, Mathematics, Statistics and Engineering Physics

    Marshall Space Flight Center Research and Technology Report 2019

    Get PDF
    Today, our calling to explore is greater than ever before, and here at Marshall Space Flight Centerwe make human deep space exploration possible. A key goal for Artemis is demonstrating and perfecting capabilities on the Moon for technologies needed for humans to get to Mars. This years report features 10 of the Agencys 16 Technology Areas, and I am proud of Marshalls role in creating solutions for so many of these daunting technical challenges. Many of these projects will lead to sustainable in-space architecture for human space exploration that will allow us to travel to the Moon, on to Mars, and beyond. Others are developing new scientific instruments capable of providing an unprecedented glimpse into our universe. NASA has led the charge in space exploration for more than six decades, and through the Artemis program we will help build on our work in low Earth orbit and pave the way to the Moon and Mars. At Marshall, we leverage the skills and interest of the international community to conduct scientific research, develop and demonstrate technology, and train international crews to operate further from Earth for longer periods of time than ever before first at the lunar surface, then on to our next giant leap, human exploration of Mars. While each project in this report seeks to advance new technology and challenge conventions, it is important to recognize the diversity of activities and people supporting our mission. This report not only showcases the Centers capabilities and our partnerships, it also highlights the progress our people have achieved in the past year. These scientists, researchers and innovators are why Marshall and NASA will continue to be a leader in innovation, exploration, and discovery for years to come

    Underwater Sensor Nodes and Networks

    Get PDF
    Sensor technology has matured enough to be used in any type of environment. The appearance of new physical sensors has increased the range of environmental parameters for gathering data. Because of the huge amount of unexploited resources in the ocean environment, there is a need of new research in the field of sensors and sensor networks. This special issue is focused on collecting recent advances on underwater sensors and underwater sensor networks in order to measure, monitor, surveillance of and control of underwater environments. On the one hand, from the sensor node perspective, we will see works related with the deployment of physical sensors, development of sensor nodes and transceivers for sensor nodes, sensor measurement analysis and several issues such as layer 1 and 2 protocols for underwater communication and sensor localization and positioning systems. On the other hand, from the sensor network perspective, we will see several architectures and protocols for underwater environments and analysis concerning sensor network measurements. Both sides will provide us a complete view of last scientific advances in this research field.Lloret, J. (2013). Underwater Sensor Nodes and Networks. Sensors. 13(9):11782-11796. doi:10.3390/s130911782S1178211796139Garcia, M., Sendra, S., Lloret, G., & Lloret, J. (2011). Monitoring and control sensor system for fish feeding in marine fish farms. IET Communications, 5(12), 1682-1690. doi:10.1049/iet-com.2010.0654Martinez, J. J., Myers, J. R., Carlson, T. J., Deng, Z. D., Rohrer, J. S., Caviggia, K. A., … Weiland, M. A. (2011). Design and Implementation of an Underwater Sound Recording Device. Sensors, 11(9), 8519-8535. doi:10.3390/s110908519Ardid, M., Martínez-Mora, J. A., Bou-Cabo, M., Larosa, G., Adrián-Martínez, S., & Llorens, C. D. (2012). Acoustic Transmitters for Underwater Neutrino Telescopes. Sensors, 12(4), 4113-4132. doi:10.3390/s120404113Baronti, F., Fantechi, G., Roncella, R., & Saletti, R. (2012). Wireless Sensor Node for Surface Seawater Density Measurements. Sensors, 12(3), 2954-2968. doi:10.3390/s120302954Mànuel, A., Roset, X., Rio, J. D., Toma, D. M., Carreras, N., Panahi, S. S., … Cadena, J. (2012). Ocean Bottom Seismometer: Design and Test of a Measurement System for Marine Seismology. Sensors, 12(3), 3693-3719. doi:10.3390/s120303693Jollymore, A., Johnson, M. S., & Hawthorne, I. (2012). Submersible UV-Vis Spectroscopy for Quantifying Streamwater Organic Carbon Dynamics: Implementation and Challenges before and after Forest Harvest in a Headwater Stream. Sensors, 12(4), 3798-3813. doi:10.3390/s120403798Won, T.-H., & Park, S.-J. (2012). Design and Implementation of an Omni-Directional Underwater Acoustic Micro-Modem Based on a Low-Power Micro-Controller Unit. Sensors, 12(2), 2309-2323. doi:10.3390/s120202309Sánchez, A., Blanc, S., Yuste, P., Perles, A., & Serrano, J. J. (2012). An Ultra-Low Power and Flexible Acoustic Modem Design to Develop Energy-Efficient Underwater Sensor Networks. Sensors, 12(6), 6837-6856. doi:10.3390/s120606837Shin, S.-Y., & Park, S.-H. (2011). A Cost Effective Block Framing Scheme for Underwater Communication. Sensors, 11(12), 11717-11735. doi:10.3390/s111211717Kim, Y., & Park, S.-H. (2011). A Query Result Merging Scheme for Providing Energy Efficiency in Underwater Sensor Networks. Sensors, 11(12), 11833-11855. doi:10.3390/s111211833Llor, J., & Malumbres, M. P. (2012). Underwater Wireless Sensor Networks: How Do Acoustic Propagation Models Impact the Performance of Higher-Level Protocols? Sensors, 12(2), 1312-1335. doi:10.3390/s120201312Zhang, G., Hovem, J. M., & Dong, H. (2012). Experimental Assessment of Different Receiver Structures for Underwater Acoustic Communications over Multipath Channels. Sensors, 12(2), 2118-2135. doi:10.3390/s120202118Ramezani, H., & Leus, G. (2012). Ranging in an Underwater Medium with Multiple Isogradient Sound Speed Profile Layers. Sensors, 12(3), 2996-3017. doi:10.3390/s120302996Lloret, J., Sendra, S., Ardid, M., & Rodrigues, J. J. P. C. (2012). Underwater Wireless Sensor Communications in the 2.4 GHz ISM Frequency Band. Sensors, 12(4), 4237-4264. doi:10.3390/s120404237Gao, M., Foh, C. H., & Cai, J. (2012). On the Selection of Transmission Range in Underwater Acoustic Sensor Networks. Sensors, 12(4), 4715-4729. doi:10.3390/s120404715Gómez, J. V., Sandnes, F. E., & Fernández, B. (2012). Sunlight Intensity Based Global Positioning System for Near-Surface Underwater Sensors. Sensors, 12(2), 1930-1949. doi:10.3390/s120201930Han, G., Jiang, J., Shu, L., Xu, Y., & Wang, F. (2012). Localization Algorithms of Underwater Wireless Sensor Networks: A Survey. Sensors, 12(2), 2026-2061. doi:10.3390/s120202026Moradi, M., Rezazadeh, J., & Ismail, A. S. (2012). A Reverse Localization Scheme for Underwater Acoustic Sensor Networks. Sensors, 12(4), 4352-4380. doi:10.3390/s120404352Lee, S., & Kim, K. (2012). Localization with a Mobile Beacon in Underwater Acoustic Sensor Networks. Sensors, 12(5), 5486-5501. doi:10.3390/s120505486Mohamed, N., Jawhar, I., Al-Jaroodi, J., & Zhang, L. (2011). Sensor Network Architectures for Monitoring Underwater Pipelines. Sensors, 11(11), 10738-10764. doi:10.3390/s111110738Macias, E., Suarez, A., Chiti, F., Sacco, A., & Fantacci, R. (2011). A Hierarchical Communication Architecture for Oceanic Surveillance Applications. Sensors, 11(12), 11343-11356. doi:10.3390/s111211343Zhang, S., Yu, J., Zhang, A., Yang, L., & Shu, Y. (2012). Marine Vehicle Sensor Network Architecture and Protocol Designs for Ocean Observation. Sensors, 12(1), 373-390. doi:10.3390/s120100373Climent, S., Capella, J. V., Meratnia, N., & Serrano, J. J. (2012). Underwater Sensor Networks: A New Energy Efficient and Robust Architecture. Sensors, 12(1), 704-731. doi:10.3390/s120100704Min, H., Cho, Y., & Heo, J. (2012). Enhancing the Reliability of Head Nodes in Underwater Sensor Networks. Sensors, 12(2), 1194-1210. doi:10.3390/s120201194Yoon, S., Azad, A. K., Oh, H., & Kim, S. (2012). AURP: An AUV-Aided Underwater Routing Protocol for Underwater Acoustic Sensor Networks. Sensors, 12(2), 1827-1845. doi:10.3390/s120201827Caiti, A., Calabrò, V., Dini, G., Lo Duca, A., & Munafò, A. (2012). Secure Cooperation of Autonomous Mobile Sensors Using an Underwater Acoustic Network. Sensors, 12(2), 1967-1989. doi:10.3390/s120201967Wu, H., Chen, M., & Guan, X. (2012). A Network Coding Based Routing Protocol for Underwater Sensor Networks. Sensors, 12(4), 4559-4577. doi:10.3390/s120404559Navarro, G., Huertas, I. E., Costas, E., Flecha, S., Díez-Minguito, M., Caballero, I., … Ruiz, J. (2012). Use of a Real-Time Remote Monitoring Network (RTRM) to Characterize the Guadalquivir Estuary (Spain). Sensors, 12(2), 1398-1421. doi:10.3390/s120201398Baladrón, C., Aguiar, J. M., Calavia, L., Carro, B., Sánchez-Esguevillas, A., & Hernández, L. (2012). Performance Study of the Application of Artificial Neural Networks to the Completion and Prediction of Data Retrieved by Underwater Sensors. Sensors, 12(2), 1468-1481. doi:10.3390/s12020146

    Enabling and Understanding Failure of Engineering Structures Using the Technique of Cohesive Elements

    Get PDF
    In this paper, we describe a cohesive zone model for the prediction of failure of engineering solids and/or structures. A damage evolution law is incorporated into a three-dimensional, exponential cohesive law to account for material degradation under the influence of cyclic loading. This cohesive zone model is implemented in the finite element software ABAQUS through a user defined subroutine. The irreversibility of the cohesive zone model is first verified and subsequently applied for studying cyclic crack growth in specimens experiencing different modes of fracture and/or failure. The crack growth behavior to include both crack initiation and crack propagation becomes a natural outcome of the numerical simulation. Numerical examples suggest that the irreversible cohesive zone model can serve as an efficient tool to predict fatigue crack growth. Key issues such as crack path deviation, convergence and mesh dependency are also discussed
    • …
    corecore