125 research outputs found

    Robust Multi-Criteria Optimal Fuzzy Control of Continuous-Time Nonlinear Systems

    Get PDF
    This paper presents a novel fuzzy control design of continuous-time nonlinear systems with multiple performance criteria. The purpose behind this work is to improve the traditional fuzzy controller performance to satisfy several performance criteria simultaneously to secure quadratic optimality with inherent stability property together with dissipativity type of disturbance reduction. The Takagi– Sugeno fuzzy model is used in our control system design. By solving the linear matrix inequality at each time step, the control solution can be found to satisfy the mixed performance criteria. The effectiveness of the proposed technique is demonstrated by simulation of the control of the inverted pendulum system

    A robust LMI approach on nonlinear feedback stabilization of continuous state-delay systems with Lipschitzian nonlinearities : experimental validation

    Get PDF
    This paper suggests a novel nonlinear state-fe edback stabilization control law using linear matrix inequalities for a class oftime-delayed nonlinear dynamic systems with Lipschitz nonlinearity conditions. Based on the Lyapunov–Krasovskiistability theory, the asymptotic stabilization criterion is derived in the linear matrix inequality form and the coef¿cients ofthe nonlinear state-feedback controller are determined. Meanwhile, an appropriate criterion to ¿nd the proper feedbackgain matrix F is also provided. The robustness purpose against nonlinear functions and time delays is guaranteed in thisscheme. Moreover , the problem of robust H!performance analysis for a class of nonlinear time-delayed system s withexternal disturbance is studied in this paper. Simulations are presented to demonstrate the pro¿ciency of the offeredtechnique. For this purpos e, an unstable nonlinear numerical system and a rotary inverted pendulum system have beenstudied in the simulation section. Moreover, an experimental study of the practical rotary inverted pendul um system isprovided. These results con¿rm the expected satisfactory performance of the suggested method.Peer ReviewedPostprint (author's final draft

    Stability and stabilization of delayed T-S fuzzy systems: A delay partitioning approach

    Get PDF
    This paper proposes a new approach, namely, the delay partitioning approach, to solving the problems of stability analysis and stabilization for continuous time-delay Takagi-Sugeno fuzzy systems. Based on the idea of delay fractioning, a new method is proposed for the delay-dependent stability analysis of fuzzy time-delay systems. Due to the instrumental idea of delay partitioning, the proposed stability condition is much less conservative than most of the existing results. The conservatism reduction becomes more obvious with the partitioning getting thinner. Based on this, the problem of stabilization via the so-called parallel distributed compensation scheme is also solved. Both the stability and stabilization results are further extended to time-delay fuzzy systems with time-varying parameter uncertainties. All the results are formulated in the form of linear matrix inequalities (LMIs), which can be readily solved via standard numerical software. The advantage of the results proposed in this paper lies in their reduced conservatism, as shown via detailed illustrative examples. The idea of delay partitioning is well demonstrated to be efficient for conservatism reduction and could be extended to solving other problems related to fuzzy delay systems. © 2009 IEEE.published_or_final_versio

    Stability analysis and stabilization for discrete-time fuzzy systems with time-varying delay

    Get PDF
    This paper is concerned with the problems of stability analysis and stabilization for discrete-time Takagi-Sugeno fuzzy systems with time-varying state delay. By constructing a new fuzzy Lyapunov function and by making use of novel techniques, an improved delay-dependent stability condition is obtained, which is dependent on the lower and upper delay bounds. The merit of the proposed stability condition lies in its reduced conservatism, which is achieved by avoiding the utilization of some bounding inequalities for the cross products between two vectors. Then, delay-dependent stabilization approach based on a parallel distributed compensation scheme is developed for both state feedback and observer-based output feedback cases. The proposed stability and stabilization conditions are formulated in terms of linear matrix inequalities, which can be solved efficiently by using existing optimization techniques. Two illustrative examples are provided to demonstrate the effectiveness of the results proposed in this paper. © 2008 IEEE.published_or_final_versio

    H∞ fuzzy filtering of nonlinear systems with intermittent measurements

    Get PDF
    This paper is concerned with the problem of H∞ fuzzy filtering of nonlinear systems with intermittent measurements. The nonlinear plant is represented by a Takagi-Sugeno (T-S) fuzzy model. The measurements transmission from the plant to the filter is assumed to be imperfect, and a stochastic variable satisfying the Bernoulli random binary distribution is utilized to model the phenomenon of the missing measurements. Attention is focused on the design of an H∞ filter such that the filter error system is stochastically stable and preserves a guaranteed H∞ performance. A basis-dependent Lyapunov function approach is developed to design the H∞ filter. By introducing some slack matrix variables, the coupling between the Lyapunov matrix and the system matrices is eliminated, which greatly facilitates the filter-design procedure. The developed theoretical results are in the form of linear matrix inequalities (LMIs). Finally, an illustrative example is provided to show the effectiveness of the proposed approach. © 2009 IEEE.published_or_final_versio

    Robust estimation and diagnosis of wind turbine pitch misalignments at a wind farm level

    Get PDF
    Wind turbine pitch misalignments provoke aerodynamic asymmetries which cause severe damage to the turbine. Hence, it is of interest to develop fault tolerant strategies to cope with pitch misalignments. Fault tolerant strategies require the information regarding the diagnosis and the estimation of the faults. However, most existing works focus only on open-loop misalignment diagnosis and do not provide robust fault estimates. In this work, we present a novel strategy to both estimate and diagnose pitch misalignments. The proposed strategy is developed at a wind farm level and it exploits altogether the information provided by the temporal and spatial relations of the turbines in the farm. Fault estimation is first addressed with a closed-loop switched observer. This observer is robust against disturbances and it adapts to the varying conditions along the wind turbine operation range. Fault diagnosis is then achieved via statistical-based decision mechanisms with adaptive thresholds. Both the observer and the decision mechanisms are designed to guarantee the desired performance. Introducing some restrictions over the number of simultaneous faulty turbines in the farm, the proposed approach is ameliorated via a bank of the aforementioned observers and decision mechanisms. Finally, the strategies are tested using a well-known wind farm benchmark

    Intelligent control of a class of nonlinear systems

    Get PDF
    The objective of this study is to improve and propose new fuzzy control algorithms for a class of nonlinear systems. In order to achieve the objectives, novel stability theorems as well as modeling techniques are also investigated. Fuzzy controllers in this work are designed based on the fuzzy basis function neural networks and the type-2 Takagi-Sugeno fuzzy models. For a class of single-input single-output nonlinear systems, a new stability condition is derived to facilitate the design process of proportional-integral Mamdani fuzzy controllers. The stability conditions require a new technique to calculate the dynamic gains of nonlinear systems represented by fuzzy basis function network models. The dynamic gain of a fuzzy basis function network can be approximated by finding the maximum of norm values of the locally linearized systems or by solving a non-smooth optimal control problem. Based on the new stability theorem, a multilevel fuzzy controller with self-tuning algorithm is proposed and simulated in a tower crane control system. For a class of multi-input multi-output nonlinear systems with measurable state variables, a new method for modeling unstructured uncertainties and robust control of unknown nonlinear dynamic systems is proposed by using a novel robust Takagi-Sugeno fuzzy controller. First, a new training algorithm for an interval type-2 fuzzy basis function network is presented. Next, a novel technique is derived to convert the interval type-2 fuzzy basis function network to an interval type-2 Takagi-Sugeno fuzzy model. Based on the interval type-2 Takagi-Sugeno and type-2 fuzzy basis function network models, a robust controller is presented with an adjustable convergence rate. Simulation results on an electrohydraulic actuator show that the robust Takagi-Sugeno fuzzy controller can reduce steady-state error under different conditions while maintaining better responses than the other robust sliding mode controllers can. Next, the study presents an implementation of type-2 fuzzy basis function networks and robust Takagi-Sugeno fuzzy controllers to data-driven modeling and robust control of a laser keyhole welding process. In this work, the variation of the keyhole diameter during the welding process is approximated by a type-2 fuzzy-basis-function network, while the keyhole penetration depth is modelled by a type-1 fuzzy basis function network. During the laser welding process, a CMOS camera integrated with the welding system was used to provide a feedback signal of the keyhole diameter. An observer was implemented to estimate the penetration depth in real time based on the adaptive divided difference filter and the feedback signal from the camera. A robust Takagi-Sugeno fuzzy controller was designed based on the fuzzy basis function networks representing the welding process with uncertainties to adjust the laser power to ensure that the penetration depth of the keyhole is maintained at a desired value. Experimental results demonstrated that the fuzzy models provided an accurate estimation of both the welding geometry and its variations due to uncertainties, and the robust Takagi-Sugeno fuzzy controller successfully reduced the penetration depth variation and improved the quality of the welding process
    corecore