873 research outputs found

    Some Preconditioning Techniques for Saddle Point Problems

    Get PDF
    Saddle point problems arise frequently in many applications in science and engineering, including constrained optimization, mixed finite element formulations of partial differential equations, circuit analysis, and so forth. Indeed the formulation of most problems with constraints gives rise to saddle point systems. This paper provides a concise overview of iterative approaches for the solution of such systems which are of particular importance in the context of large scale computation. In particular we describe some of the most useful preconditioning techniques for Krylov subspace solvers applied to saddle point problems, including block and constrained preconditioners.\ud \ud The work of Michele Benzi was supported in part by the National Science Foundation grant DMS-0511336

    Efficient Computation of the Characteristic Polynomial

    Full text link
    This article deals with the computation of the characteristic polynomial of dense matrices over small finite fields and over the integers. We first present two algorithms for the finite fields: one is based on Krylov iterates and Gaussian elimination. We compare it to an improvement of the second algorithm of Keller-Gehrig. Then we show that a generalization of Keller-Gehrig's third algorithm could improve both complexity and computational time. We use these results as a basis for the computation of the characteristic polynomial of integer matrices. We first use early termination and Chinese remaindering for dense matrices. Then a probabilistic approach, based on integer minimal polynomial and Hensel factorization, is particularly well suited to sparse and/or structured matrices

    Faster Inversion and Other Black Box Matrix Computations Using Efficient Block Projections

    Get PDF
    Block projections have been used, in [Eberly et al. 2006], to obtain an efficient algorithm to find solutions for sparse systems of linear equations. A bound of softO(n^(2.5)) machine operations is obtained assuming that the input matrix can be multiplied by a vector with constant-sized entries in softO(n) machine operations. Unfortunately, the correctness of this algorithm depends on the existence of efficient block projections, and this has been conjectured. In this paper we establish the correctness of the algorithm from [Eberly et al. 2006] by proving the existence of efficient block projections over sufficiently large fields. We demonstrate the usefulness of these projections by deriving improved bounds for the cost of several matrix problems, considering, in particular, ``sparse'' matrices that can be be multiplied by a vector using softO(n) field operations. We show how to compute the inverse of a sparse matrix over a field F using an expected number of softO(n^(2.27)) operations in F. A basis for the null space of a sparse matrix, and a certification of its rank, are obtained at the same cost. An application to Kaltofen and Villard's Baby-Steps/Giant-Steps algorithms for the determinant and Smith Form of an integer matrix yields algorithms requiring softO(n^(2.66)) machine operations. The derived algorithms are all probabilistic of the Las Vegas type

    Finding Structure with Randomness: Probabilistic Algorithms for Constructing Approximate Matrix Decompositions

    Get PDF
    Low-rank matrix approximations, such as the truncated singular value decomposition and the rank-revealing QR decomposition, play a central role in data analysis and scientific computing. This work surveys and extends recent research which demonstrates that randomization offers a powerful tool for performing low-rank matrix approximation. These techniques exploit modern computational architectures more fully than classical methods and open the possibility of dealing with truly massive data sets. This paper presents a modular framework for constructing randomized algorithms that compute partial matrix decompositions. These methods use random sampling to identify a subspace that captures most of the action of a matrix. The input matrix is then compressed—either explicitly or implicitly—to this subspace, and the reduced matrix is manipulated deterministically to obtain the desired low-rank factorization. In many cases, this approach beats its classical competitors in terms of accuracy, robustness, and/or speed. These claims are supported by extensive numerical experiments and a detailed error analysis. The specific benefits of randomized techniques depend on the computational environment. Consider the model problem of finding the k dominant components of the singular value decomposition of an m × n matrix. (i) For a dense input matrix, randomized algorithms require O(mn log(k)) floating-point operations (flops) in contrast to O(mnk) for classical algorithms. (ii) For a sparse input matrix, the flop count matches classical Krylov subspace methods, but the randomized approach is more robust and can easily be reorganized to exploit multiprocessor architectures. (iii) For a matrix that is too large to fit in fast memory, the randomized techniques require only a constant number of passes over the data, as opposed to O(k) passes for classical algorithms. In fact, it is sometimes possible to perform matrix approximation with a single pass over the data
    corecore