6,358 research outputs found

    Covert Communication over Classical-Quantum Channels

    Full text link
    The square root law (SRL) is the fundamental limit of covert communication over classical memoryless channels (with a classical adversary) and quantum lossy-noisy bosonic channels (with a quantum-powerful adversary). The SRL states that O(n)\mathcal{O}(\sqrt{n}) covert bits, but no more, can be reliably transmitted in nn channel uses with O(n)\mathcal{O}(\sqrt{n}) bits of secret pre-shared between the communicating parties. Here we investigate covert communication over general memoryless classical-quantum (cq) channels with fixed finite-size input alphabets, and show that the SRL governs covert communications in typical scenarios. %This demonstrates that the SRL is achievable over any quantum communications channel using a product-state transmission strategy, where the transmitted symbols in every channel use are drawn from a fixed finite-size alphabet. We characterize the optimal constants in front of n\sqrt{n} for the reliably communicated covert bits, as well as for the number of the pre-shared secret bits consumed. We assume a quantum-powerful adversary that can perform an arbitrary joint (entangling) measurement on all nn channel uses. However, we analyze the legitimate receiver that is able to employ a joint measurement as well as one that is restricted to performing a sequence of measurements on each of nn channel uses (product measurement). We also evaluate the scenarios where covert communication is not governed by the SRL

    Security for the Industrial IoT: The Case for Information-Centric Networking

    Full text link
    Industrial production plants traditionally include sensors for monitoring or documenting processes, and actuators for enabling corrective actions in cases of misconfigurations, failures, or dangerous events. With the advent of the IoT, embedded controllers link these `things' to local networks that often are of low power wireless kind, and are interconnected via gateways to some cloud from the global Internet. Inter-networked sensors and actuators in the industrial IoT form a critical subsystem while frequently operating under harsh conditions. It is currently under debate how to approach inter-networking of critical industrial components in a safe and secure manner. In this paper, we analyze the potentials of ICN for providing a secure and robust networking solution for constrained controllers in industrial safety systems. We showcase hazardous gas sensing in widespread industrial environments, such as refineries, and compare with IP-based approaches such as CoAP and MQTT. Our findings indicate that the content-centric security model, as well as enhanced DoS resistance are important arguments for deploying Information Centric Networking in a safety-critical industrial IoT. Evaluation of the crypto efforts on the RIOT operating system for content security reveal its feasibility for common deployment scenarios.Comment: To be published at IEEE WF-IoT 201

    Multiphoton communication in lossy channels with photon-number entangled states

    Full text link
    We address binary and quaternary communication channels based on correlated multiphoton two-mode states of radiation in the presence of losses. The protocol are based on photon number correlations and realized upon choosing a shared set of thresholds to convert the outcome of a joint photon number measurement into a symbol from a discrete alphabet. In particular, we focus on channels build using feasible photon-number entangled states (PNES) as two-mode coherently-correlated (TMC) or twin-beam (TWB) states and compare their performances with that of channels built using feasible classically correlated (separable) states. We found that PNES provide larger channel capacity in the presence of loss, and that TWB-based channels may transmit a larger amount of information than TMC-based ones at fixed energy and overall loss. Optimized bit discrimination thresholds, as well as the corresponding maximized mutual information, are explicitly evaluated as a function of the beam intensity and the loss parameter. The propagation of TMC and TWB in lossy channels is analyzed and the joint photon number distribution is evaluated, showing that the beam statistics, either sub-Poissonian for TMC or super-Poissonian for TWB, is not altered by losses. Although entanglement is not strictly needed to establish the channels, which are based on photon-number correlations owned also by separable mixed states, purity of the support state is relevant to increase security. The joint requirement of correlation and purity individuates PNES as a suitable choice to build effective channels. The effects of losses on channel security are briefly discussed.Comment: 8 pages, 19 figure

    On Coding for Reliable Communication over Packet Networks

    Full text link
    We present a capacity-achieving coding scheme for unicast or multicast over lossy packet networks. In the scheme, intermediate nodes perform additional coding yet do not decode nor even wait for a block of packets before sending out coded packets. Rather, whenever they have a transmission opportunity, they send out coded packets formed from random linear combinations of previously received packets. All coding and decoding operations have polynomial complexity. We show that the scheme is capacity-achieving as long as packets received on a link arrive according to a process that has an average rate. Thus, packet losses on a link may exhibit correlation in time or with losses on other links. In the special case of Poisson traffic with i.i.d. losses, we give error exponents that quantify the rate of decay of the probability of error with coding delay. Our analysis of the scheme shows that it is not only capacity-achieving, but that the propagation of packets carrying "innovative" information follows the propagation of jobs through a queueing network, and therefore fluid flow models yield good approximations. We consider networks with both lossy point-to-point and broadcast links, allowing us to model both wireline and wireless packet networks.Comment: 33 pages, 6 figures; revised appendi

    Quantum key distribution using non-classical photon number correlations in macroscopic light pulses

    Get PDF
    We propose a new scheme for quantum key distribution using macroscopic non-classical pulses of light having of the order 10^6 photons per pulse. Sub-shot-noise quantum correlation between the two polarization modes in a pulse gives the necessary sensitivity to eavesdropping that ensures the security of the protocol. We consider pulses of two-mode squeezed light generated by a type-II seeded parametric amplification process. We analyze the security of the system in terms of the effect of an eavesdropper on the bit error rates for the legitimate parties in the key distribution system. We also consider the effects of imperfect detectors and lossy channels on the security of the scheme.Comment: Modifications:added new eavesdropping attack, added more references Submitted to Physical Review A [email protected]

    Joint source-channel coding with feedback

    Get PDF
    This paper quantifies the fundamental limits of variable-length transmission of a general (possibly analog) source over a memoryless channel with noiseless feedback, under a distortion constraint. We consider excess distortion, average distortion and guaranteed distortion (dd-semifaithful codes). In contrast to the asymptotic fundamental limit, a general conclusion is that allowing variable-length codes and feedback leads to a sizable improvement in the fundamental delay-distortion tradeoff. In addition, we investigate the minimum energy required to reproduce kk source samples with a given fidelity after transmission over a memoryless Gaussian channel, and we show that the required minimum energy is reduced with feedback and an average (rather than maximal) power constraint.Comment: To appear in IEEE Transactions on Information Theor
    corecore