26,268 research outputs found

    DIVERSE: a Software Toolkit to Integrate Distributed Simulations with Heterogeneous Virtual Environments

    Get PDF
    We present DIVERSE (Device Independent Virtual Environments- Reconfigurable, Scalable, Extensible), which is a modular collection of complimentary software packages that we have developed to facilitate the creation of distributed operator-in-the-loop simulations. In DIVERSE we introduce a novel implementation of remote shared memory (distributed shared memory) that uses Internet Protocol (IP) networks. We also introduce a new method that automatically extends hardware drivers (not in the operating system kernel driver sense) into inter-process and Internet hardware services. Using DIVERSE, a program can display in a CAVEâ„¢, ImmersaDeskâ„¢, head mounted display (HMD), desktop or laptop without modification. We have developed a method of configuring user programs at run-time by loading dynamic shared objects (DSOs), in contrast to the more common practice of creating interpreted configuration languages. We find that by loading DSOs the development time, complexity and size of DIVERSE and DIVERSE user applications is significantly reduced. Configurations to support different I/O devices, device emulators, visual displays, and any component of a user application including interaction techniques, can be changed at run-time by loading different sets of DIVERSE DSOs. In addition, interpreted run-time configuration parsers have been implemented using DIVERSE DSOs; new ones can be created as needed. DIVERSE is free software, licensed under the terms of the GNU General Public License (GPL) and the GNU Lesser General Public License (LGPL) licenses. We describe the DIVERSE architecture and demonstrate how DIVERSE was used in the development of a specific application, an operator-in-the-loop Navy ship-board crane simulator, which runs unmodified on a desktop computer and/or in a CAVE with motion base motion queuing

    Towards Python-based Domain-specific Languages for Self-reconfigurable Modular Robotics Research

    Full text link
    This paper explores the role of operating system and high-level languages in the development of software and domain-specific languages (DSLs) for self-reconfigurable robotics. We review some of the current trends in self-reconfigurable robotics and describe the development of a software system for ATRON II which utilizes Linux and Python to significantly improve software abstraction and portability while providing some basic features which could prove useful when using Python, either stand-alone or via a DSL, on a self-reconfigurable robot system. These features include transparent socket communication, module identification, easy software transfer and reliable module-to-module communication. The end result is a software platform for modular robots that where appropriate builds on existing work in operating systems, virtual machines, middleware and high-level languages.Comment: Presented at DSLRob 2011 (arXiv:1212.3308
    • …
    corecore