42 research outputs found

    Development and Simulation of a Pseudolite-Based Flight Reference System

    Get PDF
    Current flight reference systems are vulnerable to GPS jamming and also lack the accuracy required to test new systems. Pseudolites can augment flight reference systems by improving accuracy, especially in the presence of GPS jamming. This thesis evaluates a pseudolite-based flight reference system which applies and adapts carrier-phase differential GPS techniques. The algorithm developed in this thesis utilizes an extended Kalman filter along with carrier-phase ambiguity resolution techniques. A simulation of the pseudolite-based positioning system realistically models measurement noise, multipath, pseudolite position errors, and tropospheric delay. A comparative evaluation of the algorithms performance for single and widelane frequency measurements is conducted in addition to a sensitivity analysis for each measurement error source, in order to determine design tradeoffs. Other analyses included the use of optimal smoothing, non-linear filtering techniques, and code averaging. Specific emphasis is given to two alternate methods, both developed in this research, for handling the residual tropospheric error after applying a standard tropospheric model. Results indicate that the algorithm is capable of accurately resolving the pseudolite carrier-phase ambiguities, and providing a highly accurate (centimeter-level) navigation solution. The filter enhancements, particularly the optimal smoother and tropospheric error reduction methods, improved filter performance significantly

    Precise indoor positioning with pseudolites : iRTK, iPPP and iPPP-RTK

    Full text link
    A pseudolite (PL) is a ground-based positioning system that offers flexible deployment and accurate “orbits”. The PL system can carry on the role of the GNSS to provide precise positioning for indoor users. However, there are some unusual challenges that seriously affect the performance of a PL system in precise indoor positioning. To raise PL-based positioning accuracy up to the centimeter level or higher, the use of the PL carrier phase measurement with ambiguity resolution is a unique consideration. The PL phase ambiguities are also contaminated by clock bias, multipath errors, and cycle clips. Their existence destroys the integer nature of ambiguity and impedes the pursuit of further accuracy improvement. The major contributions in this research for addressing the above-mentioned challenging issues are specified as follows: 1. The ground-based AR methods are discussed. The impact of ground-based geometry on indoor AR is researched, and the influence of linearization error is also investigated. An efficient PL-based AR method is studied and verified in the balance of gaining convenience and avoiding linearization impact. 2. The clock bias between PL transmitters can be properly handled in a way that time synchronization can be achieved with a transmitter-only PL system at low cost and simplicity. Therefore, the PL-based the ambiguities are able to be fixed to correct integers, and centimeter-level indoor precise positioning can be reliably achieved. In addition, the proposed way for time synchronization is also applicable for other ground-based systems for precise positioning purposes. 3. The stochastic model for mitigation of indoor multipath and NLOS is investigated. The experimental results demonstrate that the proposed stochastic model is superior to other existing models in indoor multipath mitigation as it is competent to suppress the multipath errors mainly caused by multipath to the smallest in both static and kinematic results, respectively. Moreover, it is also verified to be efficient for NLOS mitigation. With the proposed new stochastic model, precise point positioning is confidently expected indoors. 4. The methods for PL-based cycle slips are extensively studied and discussed. Numerical results indicate that the integer-cycle slips can be efficiently and accurately detected and corrected. The concern about PL-based cycle slip is minimized, the reliability and sustainability of PL-based precise indoor positioning can be promised

    Estimation and Mitigation of Unmodeled Errors for a Pseudolite Based Reference System

    Get PDF
    Current flight reference systems rely heavily on the Global Positioning System (GPS), causing susceptibility to GPS jamming. Additionally, an increasing number of tests involve jamming the GPS signal. A need exists to develop a system capable of GPS-level accuracy during these outages. One promising solution is a ground-based pseudolite system capable of delivering sub-centimeter level accuracy, yet operating at non-GPS frequencies. This thesis attempts to determine the unknown errors in the Locata system, one such pseudolite-based system, to achieve the accuracy required. The development of a measurement simulation tool along with a Kalman filter algorithm provides confirmation of filter performance as well as the ability to process real data measurements and evaluate simulated versus real data comparatively. The simulation tool creates various types of measurements with induced noise, tropospheric delays, pseudolite position errors, and tropospheric scale-factor errors. In turn, the Kalman filter resolves these errors, along with position, velocity, and acceleration for both simulated and real data measurements, enabling error analysis to pinpoint both expected and unexpected error sources

    Recent Advances in Indoor Localization Systems and Technologies

    Get PDF
    Despite the enormous technical progress seen in the past few years, the maturity of indoor localization technologies has not yet reached the level of GNSS solutions. The 23 selected papers in this book present the recent advances and new developments in indoor localization systems and technologies, propose novel or improved methods with increased performance, provide insight into various aspects of quality control, and also introduce some unorthodox positioning methods

    Optimal Geometric Deployment of a Ground Based Pseudolite Navigation System to Track a Landing Aircraft

    Get PDF
    With much of the military and civilian communities becoming dependent on GPS technology to navigate it has become imperative that the navigation systems be tested in situations in which GPS does not work. This testing is especially necessary for precise tasks such as landing an aircraft. Currently, research is being conducted into using a pseudolite-based reference system to use as a truth model for the GPS jamming test. Pseudolite systems have been proven to provide sub-centimeter level accuracy in the horizontal plane; however in the vertical plane the position error is still in the decimeter to meter level range. This is largely due to the fact that the geometry of a ground based pseudolite system provides poor slant angles in the vertical plane, which contributes to large positioning errors. The goal of this research is to study the effects of system geometry on the vertical plane solution. The results of this effort show that elevation angles of greater than 20°-30° are necessary to attain reasonably good positioning solutions. Multiple pseudolite deployments, while effective at reducing the geometry errors, are very cost ineffective and the geometries pose significant risks to a landing aircraft. The best geometry involved using an orbiting aircraft, with a pseudolite transmitter and receiver attached, as an elevated pseudolite to create better slant angles and thus better positioning solutions

    Mass-Market Receiver for Static Positioning: Tests and Statistical Analyses

    Get PDF
    Nowadays, there are several low cost GPS receivers able to provide both pseudorange and carrier phase measurements in the L1band, that allow to have good realtime performances in outdoor condition. The present paper describes a set of dedicated tests in order to evaluate the positioning accuracy in static conditions. The quality of the pseudorange and the carrier phase measurements let hope for interesting results. The use of such kind of receiver could be extended to a large number of professional applications, like engineering fields: survey, georeferencing, monitoring, cadastral mapping and cadastral road. In this work, the receivers performance is verified considering a single frequency solution trying to fix the phase ambiguity, when possible. Different solutions are defined: code, float and fix solutions. In order to solve the phase ambiguities different methods are considered. Each test performed is statistically analyzed, highlighting the effects of different factors on precision and accurac

    Multisensor navigation systems: a remedy for GNSS vulnerabilities?

    Get PDF
    Space-based positioning, navigation, and timing (PNT) technologies, such as the global navigation satellite systems (GNSS) provide position, velocity, and timing information to an unlimited number of users around the world. In recent years, PNT information has become increasingly critical to the security, safety, and prosperity of the World's population, and is now widely recognized as an essential element of the global information infrastructure. Due to its vulnerabilities and line-of-sight requirements, GNSS alone is unable to provide PNT with the required levels of integrity, accuracy, continuity, and reliability. A multisensor navigation approach offers an effective augmentation in GNSS-challenged environments that holds a promise of delivering robust and resilient PNT. Traditionally, sensors such as inertial measurement units (IMUs), barometers, magnetometers, odometers, and digital compasses, have been used. However, recent trends have largely focused on image-based, terrain-based and collaborative navigation to recover the user location. This paper offers a review of the technological advances that have taken place in PNT over the last two decades, and discusses various hybridizations of multisensory systems, building upon the fundamental GNSS/IMU integration. The most important conclusion of this study is that in order to meet the challenging goals of delivering continuous, accurate and robust PNT to the ever-growing numbers of users, the hybridization of a suite of different PNT solutions is required

    An Assessment of Indoor Geolocation Systems

    Get PDF
    Currently there is a need to design, develop, and deploy autonomous and portable indoor geolocation systems to fulfil the needs of military, civilian, governmental and commercial customers where GPS and GLONASS signals are not available due to the limitations of both GPS and GLONASS signal structure designs. The goal of this dissertation is (1) to introduce geolocation systems; (2) to classify the state of the art geolocation systems; (3) to identify the issues with the state of the art indoor geolocation systems; and (4) to propose and assess four WPI indoor geolocation systems. It is assessed that the current GPS and GLONASS signal structures are inadequate to overcome two main design concerns; namely, (1) the near-far effect and (2) the multipath effect. We propose four WPI indoor geolocation systems as an alternative solution to near-far and multipath effects. The WPI indoor geolocation systems are (1) a DSSS/CDMA indoor geolocation system, (2) a DSSS/CDMA/FDMA indoor geolocation system, (3) a DSSS/OFDM/CDMA/FDMA indoor geolocation system, and (4) an OFDM/FDMA indoor geolocation system. Each system is researched, discussed, and analyzed based on its principle of operation, its transmitter, the indoor channel, and its receiver design and issues associated with obtaining an observable to achieve indoor navigation. Our assessment of these systems concludes the following. First, a DSSS/CDMA indoor geolocation system is inadequate to neither overcome the near-far effect not mitigate cross-channel interference due to the multipath. Second, a DSSS/CDMA/FDMA indoor geolocation system is a potential candidate for indoor positioning, with data rate up to 3.2 KBPS, pseudorange error, less than to 2 m and phase error less than 5 mm. Third, a DSSS/OFDM/CDMA/FDMA indoor geolocation system is a potential candidate to achieve similar or better navigation accuracy than a DSSS/CDMA indoor geolocation system and data rate up to 5 MBPS. Fourth, an OFDM/FDMA indoor geolocation system is another potential candidate with a totally different signal structure than the pervious three WPI indoor geolocation systems, but with similar pseudorange error performance

    Carrier-phase multipath in satellite-based positioning

    Get PDF
    [no abstract

    A Feasibility Study of a Persistent Monitoring System for the Flight Deck of U.S. Navy Aircraft Carriers

    Get PDF
    This research analyzes the use of modern Real Time Locating Systems (RTLS), such as the Global Positioning System (GPS), to improve the safety of aircraft, equipment, and personnel onboard a United States Navy (USN) aircraft carrier. The results of a detailed analysis of USN safety records since 1980 show that mishaps which could potentially be prevented by a persistent monitoring system result in the death of a sailor nearly every other year and account for at least $92,486,469, or 5.55% of the total cost of all flight deck and hangar bay related mishaps. A system to continually monitor flight deck operations is proposed with four successive levels of increasing capability. A study of past and present work in the area of aircraft carrier flight deck operations is performed. This research conducted a study of the movements of USN personnel and an FA-18C aircraft being towed at NAS Oceana, VA. Using two precision GPS recorders mounted on the aircraft wingtips, the position and orientation of the aircraft, in two-dimensions, are calculated and the errors in this solution are explored. The distance between personnel and the aircraft is calculated in the nearest neighbor sense. Pseudospectral motion planning techniques are presented to provide route prediction for aircraft, support equipment, and personnel. Concepts for system components, such as aircraft and personnel receivers, are described. Methods to recognize and communicate the presence of hazardous situations are discussed. The end result of this research is the identification of performance requirements, limitations, and definition of areas of further research for the development of a flight deck persistent monitoring system with the capability to warn of hazardous situations, ease the incorporation of UAVs, and reduce the risk of death or injury faced by sailors on the flight deck
    corecore