32 research outputs found

    Identification of Unmodeled Dynamics in Rotor Systems Using Mu-Synthesis Approach

    Get PDF
    It is well recognized that analytical models only approximate the true dynamics of analyzed rotating machines, due to the presence of components that are inherently difficult to model. Such models of rotating machines are driven by the best engineering knowledge and experience, and very often are updated based on experimental results. The problem of unmodeled or missing dynamics can be exacerbated in the presence of rotor structural damage such as a transverse crack on a shaft. This thesis will present an effective approach for model updating using advanced tools developed in robust control theory, specifically mu-synthesis. The methodology will be introduced based on a simple three-mass system and then applied to identification of the minute changes in the dynamics of the rotor test rig due to the presence of a transverse crack. Experimental data collected from the cracked rotor rig will be utilized to validate the developed approac

    Identification of Unmodeled Dynamics in Rotor Systems Using Mu-Synthesis Approach

    Get PDF
    It is well recognized that analytical models only approximate the true dynamics of analyzed rotating machines, due to the presence of components that are inherently difficult to model. Such models of rotating machines are driven by the best engineering knowledge and experience, and very often are updated based on experimental results. The problem of unmodeled or missing dynamics can be exacerbated in the presence of rotor structural damage such as a transverse crack on a shaft. This thesis will present an effective approach for model updating using advanced tools developed in robust control theory, specifically mu-synthesis. The methodology will be introduced based on a simple three-mass system and then applied to identification of the minute changes in the dynamics of the rotor test rig due to the presence of a transverse crack. Experimental data collected from the cracked rotor rig will be utilized to validate the developed approac

    Design and analysis of robust controllers for directional drilling tools

    Get PDF
    Directional drilling is a very important tool for the development of oil and gas deposits. Attitude control which enables directional drilling for the efficient placement of the directional drilling tools in petroleum producing zones is reviewed along with the various engineering requirements or constraints. This thesis explores a multivariable attitude governing plant model as formulated in Panchal et al. (2010) which is used for developing robust control techniques. An inherent input and measurement delay which accounts for the plant's dead-time is included in the design of the controllers. A Smith Predictor controller is developed for reducing the effect of this dead-time. The developed controllers are compared for performance and robustness using structured singular value analysis and also for their performance indicated by the transient response of the closed loop models. Results for the transient non-linear simulation of the proposed controllers are also presented. The results obtained indicate that the objectives are satisfactorily achieved

    Nonlinear Control and Estimation with General Performance Criteria

    Get PDF
    This dissertation is concerned with nonlinear systems control and estimation with general performance criteria. The purpose of this work is to propose general design methods to provide systematic and effective design frameworks for nonlinear system control and estimation problems. First, novel State Dependent Linear Matrix Inequality control approach is proposed, which is optimally robust for model uncertainties and resilient against control feedback gain perturbations in achieving general performance criteria to secure quadratic optimality with inherent asymptotic stability property together with quadratic dissipative type of disturbance reduction. By solving a state dependent linear matrix inequality at each time step, the sufficient condition for the control solution can be found which satisfies the general performance criteria. The results of this dissertation unify existing results on nonlinear quadratic regulator, Hinfinity and positive real control. Secondly, an H2-Hinfinity State Dependent Riccati Equation controller is proposed in this dissertation. By solving the generalized State Dependent Riccati Equation, the optimal control solution not only achieves the optimal quadratic regulation performance, but also has the capability of external disturbance reduction. Numerically efficient algorithms are developed to facilitate effective computation. Thirdly, a robust multi-criteria optimal fuzzy control of nonlinear systems is proposed. To improve the optimality and robustness, optimal fuzzy control is proposed for nonlinear systems with general performance criteria. The Takagi-Sugeno fuzzy model is used as an effective tool to control nonlinear systems through fuzzy rule models. General performance criteria have been used to design the controller and the relative weighting matrices of these criteria can be achieved by choosing different coefficient matrices. The optimal control can be achieved by solving the LMI at each time step. Lastly, since any type of controller and observer is subject to actuator failures and sensors failures respectively, novel robust and resilient controllers and estimators are also proposed for nonlinear stochastic systems to address these failure problems. The effectiveness of the proposed control and estimation techniques are demonstrated by simulations of nonlinear systems: the inverted pendulum on a cart and the Lorenz chaotic system, respectively

    Cooperation of unmanned systems for agricultural applications: A theoretical framework

    Get PDF
    Agriculture 4.0 comprises a set of technologies that combines sensors, information systems, enhanced machinery, and informed management with the objective of optimising production by accounting for variabilities and uncertainties within agricultural systems. Autonomous ground and aerial vehicles can lead to favourable improvements in management by performing in-field tasks in a time-effective way. In particular, greater benefits can be achieved by allowing cooperation and collaborative action among unmanned vehicles, both aerial and ground, to perform in-field operations in precise and time-effective ways. In this work, the preliminary and crucial step of analysing and understanding the technical and methodological challenges concerning the main problems involved is performed. An overview of the agricultural scenarios that can benefit from using collaborative machines and the corresponding cooperative schemes typically adopted in this framework are presented. A collection of kinematic and dynamic models for different categories of autonomous aerial and ground vehicles is provided, which represents a crucial step in understanding the vehicles behaviour when full autonomy is desired. Last, a collection of the state-of-the-art technologies for the autonomous guidance of drones is provided, summarising their peculiar characteristics, and highlighting their advantages and shortcomings with a specific focus on the Agriculture 4.0 framework. A companion paper reports the application of some of these techniques in a complete case study in sloped vineyards, applying the proposed multi-phase collaborative scheme introduced here

    Load Disturbance Torque Estimation for Motor Drive Systems with Application to Electric Power Steering System

    Get PDF
    Motors are widely used in industries due to its ability to provide high mechanical power in speed and torque applications. Its flexibility to control and quick response are other reasons for its widespread use. Disturbance torque acting on the motor shaft is a major factor which affects the motor performance. Considering the load disturbance torque while designing the control for the motor makes the system more robust to load changes. Most disturbance observers are designed for steady state load conditions. The observer designed here considers a general case making no assumptions about the load torque dynamics. The observer design methods to be used under different disturbance conditions are also discussed and the performances compared. The designed observer is tested in a Hardware-in-Loop (HIL) setup for different load conditions. A motor load torque estimation based Fault Tolerant Control (FTC) is then designed for an Electric Power Steering (EPS) system

    Computationalcost Reduction of Robust Controllers Foractive Magnetic Bearing Systems

    Get PDF
    This work developed strategies for reducing the computational complexity of implementing robust controllers for active magnetic bearing (AMB) systems and investigated the use of a novel add-on controller for gyroscopic effect compensation to improve achievable performance with robust controllers. AMB systems are multi-input multi-output (MIMO) systems with many interacting mechanisms that needs to fulfill conflicting performance criteria. That is why robust control techniques are a perfect application for AMB systems as they provide systematic methods to address both robustness and performance objectives. However, robust control techniques generally result in high order controllers that require high-end control hardware for implementation. Such controllers are not desirable by industrial AMB vendors since their hardware is based on embedded systems with limited bandwidths. That is why the computational cost is a major obstacle towards industry adaptation of robust controllers. Two novel strategies are developed to reduce the computational complexity of singlerate robust controllers while preserving robust performance. The first strategy identifies a dual-rate configuration of the controller for implementation. The selection of the dualrate configuration uses the worst-case plant analysis and a novel approach that identifies the largest tolerable perturbations to the controller. The second strategy aims to redesign iv the controller by identifying and removing negligible channels in the context of robust performance via the largest tolerable perturbations to the controller. The developed methods are demonstrated both in simulation and experiment using three different AMB systems, where significant computational savings are achieved without degrading the performance. To improve the achievable performance with robust controllers, a novel add-on controller is developed to compensate the gyroscopic effects in flexible rotor-AMB systems via modal feedback control. The compensation allows for relaxing the robustness requirements in the control problem formulation, potentially enabling better performance. The effectiveness of the developed add-on controller is demonstrated experimentally on two AMB systems with different rotor configurations. The effects of the presence of the add-on controller on the performance controller design is investigated for one of the AMB systems. Slight performance improvements are observed at the cost of increased power consumption and increased computational complexity
    corecore