4,292 research outputs found

    High Performance Communication Framework for Mobile Sinks Wireless Sensor Networks

    Get PDF
    A wireless sensor networks typically consist of thousand of nodes and each node has limited power, processing and bandwidth resources. Harvesting advances in the past decade in microelectronics, sensing, wireless communications and networking, sensor networks technology is expected to have a significant impact on our lives in the twenty-first century. Proposed applications of sensor networks include environmental monitoring, natural disaster prediction and relief, homeland security, healthcare, manufacturing, transportation, and home appliances and entertainment. However, Communication is one of the major challenges in wireless sensor networks as it is the main source for energy depletion. Improved network lifetime is a fundamental challenge of wireless sensor networks. Many researchers have proposed using mobile sinks as one possible solution to improve the lifetime of wireless sensor networks. The reason is that the typical manyto- one communication traffic pattern in wireless sensor networks imposes a heavy forwarding load on the nodes close to the sinks. However, it also introduces many research challenges such as the high communication overhead for updating the dynamic routing paths to connect to mobile sinks and packet loss problems while transmitted messages to mobile sinks. Therefore, our goal is to design a robust and efficient routing framework for both non-geographic aware and geographic aware mobile sinks wireless sensor networks. In order to achieve this goal in non-geographic based mobile sinks wireless sensor networks, we proposed a spider-net zone routing protocol to improve network efficiency and lifetime. Our proposed routing protocol utilise spider web topology inspired by the way spiders hunt prey in their web to provide reliable and high performance data delivery to mobile sinks. For routing in geographic aware based mobile sinks wireless sensor networks, we proposed a fault-tolerant magnetic coordinate routing algorithm to allow these network sensors to take advantage of geographic knowledge to build a routing protocol. Our proposed routing algorithm incorporates a coordinated routing algorithm for grid based network topology to improve network performance. Our third contribution is a component level fault diagnosis scheme for wireless sensor networks. The advantage of this scheme, causal model fault diagnosis, is that it can "deeply understand" and express the relationship among failure behaviours and node system components through causal relations. The above contributions constitute a novel routing framework to address the routing challenges in mobile sinks wireless sensor networks, Our framework considers both geographic and non-geographic aware based sensor networks to achieve energy efficient, high performance and network reliability. We have analyzed the proposed protocols and schemes and evaluated their performances using analytical study and simulations. The evaluation was based on the most important metries in wireless sensor networks, such as: power consumption and average delay. The evaluation shows that our solution is more energy efficient, improves the network performance, and provides data reliability in mobile sinks wireless sensor networks

    A Review of the Energy Efficient and Secure Multicast Routing Protocols for Mobile Ad hoc Networks

    Full text link
    This paper presents a thorough survey of recent work addressing energy efficient multicast routing protocols and secure multicast routing protocols in Mobile Ad hoc Networks (MANETs). There are so many issues and solutions which witness the need of energy management and security in ad hoc wireless networks. The objective of a multicast routing protocol for MANETs is to support the propagation of data from a sender to all the receivers of a multicast group while trying to use the available bandwidth efficiently in the presence of frequent topology changes. Multicasting can improve the efficiency of the wireless link when sending multiple copies of messages by exploiting the inherent broadcast property of wireless transmission. Secure multicast routing plays a significant role in MANETs. However, offering energy efficient and secure multicast routing is a difficult and challenging task. In recent years, various multicast routing protocols have been proposed for MANETs. These protocols have distinguishing features and use different mechanismsComment: 15 page

    Robotic Wireless Sensor Networks

    Full text link
    In this chapter, we present a literature survey of an emerging, cutting-edge, and multi-disciplinary field of research at the intersection of Robotics and Wireless Sensor Networks (WSN) which we refer to as Robotic Wireless Sensor Networks (RWSN). We define a RWSN as an autonomous networked multi-robot system that aims to achieve certain sensing goals while meeting and maintaining certain communication performance requirements, through cooperative control, learning and adaptation. While both of the component areas, i.e., Robotics and WSN, are very well-known and well-explored, there exist a whole set of new opportunities and research directions at the intersection of these two fields which are relatively or even completely unexplored. One such example would be the use of a set of robotic routers to set up a temporary communication path between a sender and a receiver that uses the controlled mobility to the advantage of packet routing. We find that there exist only a limited number of articles to be directly categorized as RWSN related works whereas there exist a range of articles in the robotics and the WSN literature that are also relevant to this new field of research. To connect the dots, we first identify the core problems and research trends related to RWSN such as connectivity, localization, routing, and robust flow of information. Next, we classify the existing research on RWSN as well as the relevant state-of-the-arts from robotics and WSN community according to the problems and trends identified in the first step. Lastly, we analyze what is missing in the existing literature, and identify topics that require more research attention in the future

    Proactive Highly Ambulatory Sensor Routing (PHASeR) protocol for mobile wireless sensor networks

    Get PDF
    This paper presents a novel multihop routing protocol for mobile wireless sensor networks called PHASeR (Proactive Highly Ambulatory Sensor Routing). The proposed protocol uses a simple hop-count metric to enable the dynamic and robust routing of data towards the sink in mobile environments. It is motivated by the application of radiation mapping by unmanned vehicles, which requires the reliable and timely delivery of regular measurements to the sink. PHASeR maintains a gradient metric in mobile environments by using a global TDMA MAC layer. It also uses the technique of blind forwarding to pass messages through the network in a multipath manner. PHASeR is analysed mathematically based on packet delivery ratio, average packet delay, throughput and overhead. It is then simulated with varying mobility, scalability and traffic loads. The protocol gives good results over all measures, which suggests that it may also be suitable for a wider array of emerging applications
    corecore