194 research outputs found

    Time-and event-driven communication process for networked control systems: A survey

    Get PDF
    Copyright © 2014 Lei Zou et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.In recent years, theoretical and practical research topics on networked control systems (NCSs) have gained an increasing interest from many researchers in a variety of disciplines owing to the extensive applications of NCSs in practice. In particular, an urgent need has arisen to understand the effects of communication processes on system performances. Sampling and protocol are two fundamental aspects of a communication process which have attracted a great deal of research attention. Most research focus has been on the analysis and control of dynamical behaviors under certain sampling procedures and communication protocols. In this paper, we aim to survey some recent advances on the analysis and synthesis issues of NCSs with different sampling procedures (time-and event-driven sampling) and protocols (static and dynamic protocols). First, these sampling procedures and protocols are introduced in detail according to their engineering backgrounds as well as dynamic natures. Then, the developments of the stabilization, control, and filtering problems are systematically reviewed and discussed in great detail. Finally, we conclude the paper by outlining future research challenges for analysis and synthesis problems of NCSs with different communication processes.This work was supported in part by the National Natural Science Foundation of China under Grants 61329301, 61374127, and 61374010, the Royal Society of the UK, and the Alexander von Humboldt Foundation of Germany

    Robust H

    Get PDF
    This paper investigates the problem of robust H∞ fault detection for networked Markov jump systems with random time-delay which is introduced by the network. The random time-delay is modeled as a Markov process, and the networked Markov jump systems are modeled as control systems containing two Markov chains. The delay-dependent fault detection filter is constructed. Furthermore, the sufficient and necessary conditions which make the closed-loop system stochastically stable and achieve prescribed H∞ performance are derived. The method of calculating controller, fault detection filter gain matrices, and the minimal H∞ attenuation level is also obtained. Finally, one numerical example is used to illustrate the effectiveness of the proposed method
    • …
    corecore