3,361 research outputs found

    Fault estimation and active fault tolerant control for linear parameter varying descriptor systems

    Get PDF
    Starting with the baseline controller design, this paper proposes an integrated approach of active fault tolerant control based on proportional derivative extended state observer (PDESO) for linear parameter varying descriptor systems. The PDESO can simultaneously provide the estimates of the system states, sensor faults, and actuator faults. The L₂ robust performance of the closed-loop system to bounded exogenous disturbance and bounded uncertainty is achieved by a two-step design procedure adapted from the traditional observer-based controller design. Furthermore, an LMI pole-placement region and the L₂ robustness performance are combined into a multiobjective formulation by suitably combing the appropriate LMI descriptions. A parameter-varying system example is given to illustrate the design procedure and the validity of the proposed integrated design approach

    Robust H

    Get PDF

    Variance-constrained multiobjective control and filtering for nonlinear stochastic systems: A survey

    Get PDF
    The multiobjective control and filtering problems for nonlinear stochastic systems with variance constraints are surveyed. First, the concepts of nonlinear stochastic systems are recalled along with the introduction of some recent advances. Then, the covariance control theory, which serves as a practical method for multi-objective control design as well as a foundation for linear system theory, is reviewed comprehensively. The multiple design requirements frequently applied in engineering practice for the use of evaluating system performances are introduced, including robustness, reliability, and dissipativity. Several design techniques suitable for the multi-objective variance-constrained control and filtering problems for nonlinear stochastic systems are discussed. In particular, as a special case for the multi-objective design problems, the mixed H 2 / H ∞ control and filtering problems are reviewed in great detail. Subsequently, some latest results on the variance-constrained multi-objective control and filtering problems for the nonlinear stochastic systems are summarized. Finally, conclusions are drawn, and several possible future research directions are pointed out

    Integral Sliding Mode Control for Markovian Jump T-S Fuzzy Descriptor Systems Based on the Super-Twisting Algorithm

    Get PDF
    This paper investigates integral sliding mode control problems for Markovian jump T-S fuzzy descriptor systems via the super-twisting algorithm. A new integral sliding surface which is continuous is constructed and an integral sliding mode control scheme based on a variable gain super-twisting algorithm is presented to guarantee the well-posedness of the state trajectories between two consecutive switchings. The stability of the sliding motion is analyzed by considering the descriptor redundancy and the properties of fuzzy membership functions. It is shown that the proposed variable gain super-twisting algorithm is an extension of the classical single-input case to the multi-input case. Finally, a bio-economic system is numerically simulated to verify the merits of the method proposed

    Stability and stabilization of delayed T-S fuzzy systems: A delay partitioning approach

    Get PDF
    This paper proposes a new approach, namely, the delay partitioning approach, to solving the problems of stability analysis and stabilization for continuous time-delay Takagi-Sugeno fuzzy systems. Based on the idea of delay fractioning, a new method is proposed for the delay-dependent stability analysis of fuzzy time-delay systems. Due to the instrumental idea of delay partitioning, the proposed stability condition is much less conservative than most of the existing results. The conservatism reduction becomes more obvious with the partitioning getting thinner. Based on this, the problem of stabilization via the so-called parallel distributed compensation scheme is also solved. Both the stability and stabilization results are further extended to time-delay fuzzy systems with time-varying parameter uncertainties. All the results are formulated in the form of linear matrix inequalities (LMIs), which can be readily solved via standard numerical software. The advantage of the results proposed in this paper lies in their reduced conservatism, as shown via detailed illustrative examples. The idea of delay partitioning is well demonstrated to be efficient for conservatism reduction and could be extended to solving other problems related to fuzzy delay systems. © 2009 IEEE.published_or_final_versio

    H ∞  sliding mode observer design for a class of nonlinear discrete time-delay systems: A delay-fractioning approach

    Get PDF
    Copyright @ 2012 John Wiley & SonsIn this paper, the H ∞  sliding mode observer (SMO) design problem is investigated for a class of nonlinear discrete time-delay systems. The nonlinear descriptions quantify the maximum possible derivations from a linear model, and the system states are allowed to be immeasurable. Attention is focused on the design of a discrete-time SMO such that the asymptotic stability as well as the H ∞  performance requirement of the error dynamics can be guaranteed in the presence of nonlinearities, time delay and external disturbances. Firstly, a discrete-time discontinuous switched term is proposed to make sure that the reaching condition holds. Then, by constructing a new Lyapunov–Krasovskii functional based on the idea of ‘delay fractioning’ and by introducing some appropriate free-weighting matrices, a sufficient condition is established to guarantee the desired performance of the error dynamics in the specified sliding mode surface by solving a minimization problem. Finally, an illustrative example is given to show the effectiveness of the designed SMO design scheme

    Design of robust control for uncertain fuzzy quadruple-tank systems with time-varying delays

    Get PDF
    Producción CientíficaThe robust H∞ observer-based control design is addressed here for non-linear Takagi-Sugeno (T-S) fuzzy systems with time-varying delays, subject to uncertainties and external disturbances. This is motivated by the quadruple-tank with time delay control problem. The observer design methodology is based on constructing an appropriate Lyapunov–Krasovskii functional (LKF) for an augmented system formed from the original and the delayed states. The bilinear terms are transferred to the linear matrix inequalities, thanks to a change of variables which can be solved in one step. Furthermore, by employing the L2 performance index, the adverse effects of persistent bounded disturbances is largely avoided. The proposed method has the advantage of relating the controller and Lyapunov function to both the original and delayed states. Then, the controller and observer gains are obtained simultaneously by solving these inequalities with off-the-shelf software (Yalmip/MATLAB toolbox). Finally, an application to a simulated quadruple-tank system with time delay is carried out to demonstrate the benefits of the proposed technique, showing a compromise between controller simplicity and robustness that outperforms previous approaches.Publicación en abierto financiada por el Consorcio de Bibliotecas Universitarias de Castilla y León (BUCLE), con cargo al Programa Operativo 2014ES16RFOP009 FEDER 2014-2020 DE CASTILLA Y LEÓN, Actuación:20007-CL - Apoyo Consorcio BUCL

    Time-Delay Systems

    Get PDF
    Time delay is very often encountered in various technical systems, such as electric, pneumatic and hydraulic networks, chemical processes, long transmission lines, robotics, etc. The existence of pure time lag, regardless if it is present in the control or/and the state, may cause undesirable system transient response, or even instability. Consequently, the problem of controllability, observability, robustness, optimization, adaptive control, pole placement and particularly stability and robustness stabilization for this class of systems, has been one of the main interests for many scientists and researchers during the last five decades

    Review of Person Re-identification Techniques

    Full text link
    Person re-identification across different surveillance cameras with disjoint fields of view has become one of the most interesting and challenging subjects in the area of intelligent video surveillance. Although several methods have been developed and proposed, certain limitations and unresolved issues remain. In all of the existing re-identification approaches, feature vectors are extracted from segmented still images or video frames. Different similarity or dissimilarity measures have been applied to these vectors. Some methods have used simple constant metrics, whereas others have utilised models to obtain optimised metrics. Some have created models based on local colour or texture information, and others have built models based on the gait of people. In general, the main objective of all these approaches is to achieve a higher-accuracy rate and lowercomputational costs. This study summarises several developments in recent literature and discusses the various available methods used in person re-identification. Specifically, their advantages and disadvantages are mentioned and compared.Comment: Published 201
    corecore