45,968 research outputs found

    WSN infrastructure for green campus development

    Get PDF
    A system providing accurate environmental data for campus stakeholders to formulate and evaluate policies of the sustainable campus development is needed. This paper presents the design of WSN infrastructure capable of providing accurate, real-time and reliable environment data, namely PM2.5, SO2, CO, O3, NO2, temperature, humidity, soil moisture and light intensity to be analyzed and presented by servers. This infrastructure is composed of fixed sensor nodes, mobile sensor nodes, display nodes and server nodes. The sensor node provides environment raw data to the server using an RF transceiver. The server processes, stores and presents environment information to public users through Internet and mobile network. This infrastructure can be used as a platform to provide environmental data to decision support system for campus stakeholders, so that a recommendation can be made

    From Dumb Wireless Sensors to Smart Networks using Network Coding

    Full text link
    The vision of wireless sensor networks is one of a smart collection of tiny, dumb devices. These motes may be individually cheap, unintelligent, imprecise, and unreliable. Yet they are able to derive strength from numbers, rendering the whole to be strong, reliable and robust. Our approach is to adopt a distributed and randomized mindset and rely on in network processing and network coding. Our general abstraction is that nodes should act only locally and independently, and the desired global behavior should arise as a collective property of the network. We summarize our work and present how these ideas can be applied for communication and storage in sensor networks.Comment: To be presented at the Inaugural Workshop of the Center for Information Theory and Its Applications, University of California - San Diego, La Jolla, CA, February 6 - 10, 200

    Managed information gathering and fusion for transient transport problems

    Get PDF
    This paper deals with vehicular traffic management by communication technologies from Traffic Control Center point of view in road networks. The global goal is to manage the urban traffic by road traffic operations, controlling and interventional possibilities in order to minimize the traffic delays and stops and to improve traffic safety on the roads. This paper focuses on transient transport, when the controlling management is crucial. The aim was to detect the beginning time of the transient traffic on the roads, to gather the most appropriate data and to get reliable information for interventional suggestions. More reliable information can be created by information fusion, several fusion techniques are expounded in this paper. A half-automatic solution with Decision Support System has been developed to help with engineers in suggestions of interventions based on real time traffic data. The information fusion has benefits for Decision Support System: the complementary sensors may fill the gaps of one another, the system is able to detect the changing of the percentage of different vehicle types in traffic. An example of detection and interventional suggestion about transient traffic on transport networks of a little town is presented at the end of the paper. The novelty of this paper is the gathering of information - triggered by the state changing from stationer to transient - from ad hoc channels and combining them with information from developed regular channels. --information gathering,information fusion,Kalman filter,transient traffic,Decision Support System

    Foreground removal from CMB temperature maps using an MLP neural network

    Full text link
    One of the main obstacles in extracting the Cosmic Microwave Background (CMB) signal from observations in the mm-submm range is the foreground contamination by emission from galactic components: mainly synchrotron, free-free and thermal dust emission. Due to the statistical nature of the intrinsic CMB signal it is essential to minimize the systematic errors in the CMB temperature determinations. Following the available knowledge of the spectral behavior of the galactic foregrounds simple, power law-like spectra have been assumed. The feasibility of using a simple neural network for extracting the CMB temperature signal from the combined CMB and foreground signals has been investigated. As a specific example, we have analysed simulated data, like that expected from the ESA Planck Surveyor mission. A simple multilayer perceptron neural network with 2 hidden layers can provide temperature estimates, over more than 80 percent of the sky, that are to a high degree uncorrelated with the foreground signals. A single network will be able to cover the dynamic range of the Planck noise level over the entire sky.Comment: Accepted for publication in Astrophysics and Space Scienc

    Towards the development of a smart flying sensor: illustration in the field of precision agriculture

    Get PDF
    Sensing is an important element to quantify productivity, product quality and to make decisions. Applications, such as mapping, surveillance, exploration and precision agriculture, require a reliable platform for remote sensing. This paper presents the first steps towards the development of a smart flying sensor based on an unmanned aerial vehicle (UAV). The concept of smart remote sensing is illustrated and its performance tested for the task of mapping the volume of grain inside a trailer during forage harvesting. Novelty lies in: (1) the development of a position-estimation method with time delay compensation based on inertial measurement unit (IMU) sensors and image processing; (2) a method to build a 3D map using information obtained from a regular camera; and (3) the design and implementation of a path-following control algorithm using model predictive control (MPC). Experimental results on a lab-scale system validate the effectiveness of the proposed methodology

    Making Evildoers Pay: Resource-Competitive Broadcast in Sensor Networks

    Full text link
    Consider a time-slotted, single-hop, wireless sensor network (WSN) consisting of n correct devices and and t=f*n Byzantine devices where f>=0 is any constant; that is, the Byzantine devices may outnumber the correct ones. There exists a trusted sender Alice who wishes to deliver a message m over a single channel to the correct devices. There also exists a malicious user Carol who controls the t Byzantine devices and uses them to disrupt the communication channel. For a constant k>=2, the correct and Byzantine devices each possess a meager energy budget of O(n^{1/k}), Alice and Carol each possess a limited budget of \tilde{O}(n^{1/k}), and sending or listening in a slot incurs unit cost. This general setup captures the inherent challenges of guaranteeing communication despite scarce resources and attacks on the network. Given this Alice versus Carol scenario, we ask: Is communication of m feasible and, if so, at what cost? We develop a protocol which, for an arbitrarily small constant \epsilon>0, ensures that at least (1-\epsilon)n correct devices receive m with high probability. Furthermore, if Carol's devices expend T energy jamming the channel, then Alice and the correct devices each spend only \tilde{O}(T^{1/(k+1)}). In other words, delaying the transmission of m forces a jammer to rapidly deplete its energy supply and, consequently, cease attacks on the network

    Energy managed reporting for wireless sensor networks

    No full text
    In this paper, we propose a technique to extend the network lifetime of a wireless sensor network, whereby each sensor node decides its individual network involvement based on its own energy resources and the information contained in each packet. The information content is ascertained through a system of rules describing prospective events in the sensed environment, and how important such events are. While the packets deemed most important are propagated by all sensor nodes, low importance packets are handled by only the nodes with high energy reserves. Results obtained from simulations depicting a wireless sensor network used to monitor pump temperature in an industrial environment have shown that a considerable increase in the network lifetime and network connectivity can be obtained. The results also show that when coupled with a form of energy harvesting, our technique can enable perpetual network operatio
    corecore