33,305 research outputs found

    Quantifying Model Complexity via Functional Decomposition for Better Post-Hoc Interpretability

    Full text link
    Post-hoc model-agnostic interpretation methods such as partial dependence plots can be employed to interpret complex machine learning models. While these interpretation methods can be applied regardless of model complexity, they can produce misleading and verbose results if the model is too complex, especially w.r.t. feature interactions. To quantify the complexity of arbitrary machine learning models, we propose model-agnostic complexity measures based on functional decomposition: number of features used, interaction strength and main effect complexity. We show that post-hoc interpretation of models that minimize the three measures is more reliable and compact. Furthermore, we demonstrate the application of these measures in a multi-objective optimization approach which simultaneously minimizes loss and complexity

    Task-Agnostic Graph Neural Network Evaluation via Adversarial Collaboration

    Full text link
    It has been increasingly demanding to develop reliable methods to evaluate the progress of Graph Neural Network (GNN) research for molecular representation learning. Existing GNN benchmarking methods for molecular representation learning focus on comparing the GNNs' performances on some node/graph classification/regression tasks on certain datasets. However, there lacks a principled, task-agnostic method to directly compare two GNNs. Additionally, most of the existing self-supervised learning works incorporate handcrafted augmentations to the data, which has several severe difficulties to be applied on graphs due to their unique characteristics. To address the aforementioned issues, we propose GraphAC (Graph Adversarial Collaboration) -- a conceptually novel, principled, task-agnostic, and stable framework for evaluating GNNs through contrastive self-supervision. We introduce a novel objective function: the Competitive Barlow Twins, that allow two GNNs to jointly update themselves from direct competitions against each other. GraphAC succeeds in distinguishing GNNs of different expressiveness across various aspects, and has demonstrated to be a principled and reliable GNN evaluation method, without necessitating any augmentations.Comment: 11th International Conference on Learning Representations (ICLR 2023) Machine Learning for Drug Discovery (MLDD) Workshop. 17 pages, 6 figures, 4 table

    A Topic-Agnostic Approach for Identifying Fake News Pages

    Full text link
    Fake news and misinformation have been increasingly used to manipulate popular opinion and influence political processes. To better understand fake news, how they are propagated, and how to counter their effect, it is necessary to first identify them. Recently, approaches have been proposed to automatically classify articles as fake based on their content. An important challenge for these approaches comes from the dynamic nature of news: as new political events are covered, topics and discourse constantly change and thus, a classifier trained using content from articles published at a given time is likely to become ineffective in the future. To address this challenge, we propose a topic-agnostic (TAG) classification strategy that uses linguistic and web-markup features to identify fake news pages. We report experimental results using multiple data sets which show that our approach attains high accuracy in the identification of fake news, even as topics evolve over time.Comment: Accepted for publication in the Companion Proceedings of the 2019 World Wide Web Conference (WWW'19 Companion). Presented in the 2019 International Workshop on Misinformation, Computational Fact-Checking and Credible Web (MisinfoWorkshop2019). 6 page

    Efficient Learning with Arbitrary Covariate Shift

    Full text link
    We give an efficient algorithm for learning a binary function in a given class C of bounded VC dimension, with training data distributed according to P and test data according to Q, where P and Q may be arbitrary distributions over X. This is the generic form of what is called covariate shift, which is impossible in general as arbitrary P and Q may not even overlap. However, recently guarantees were given in a model called PQ-learning (Goldwasser et al., 2020) where the learner has: (a) access to unlabeled test examples from Q (in addition to labeled samples from P, i.e., semi-supervised learning); and (b) the option to reject any example and abstain from classifying it (i.e., selective classification). The algorithm of Goldwasser et al. (2020) requires an (agnostic) noise tolerant learner for C. The present work gives a polynomial-time PQ-learning algorithm that uses an oracle to a "reliable" learner for C, where reliable learning (Kalai et al., 2012) is a model of learning with one-sided noise. Furthermore, our reduction is optimal in the sense that we show the equivalence of reliable and PQ learning

    Towards robust and reliable multimedia analysis through semantic integration of services

    Get PDF
    Thanks to ubiquitous Web connectivity and portable multimedia devices, it has never been so easy to produce and distribute new multimedia resources such as videos, photos, and audio. This ever-increasing production leads to an information overload for consumers, which calls for efficient multimedia retrieval techniques. Multimedia resources can be efficiently retrieved using their metadata, but the multimedia analysis methods that can automatically generate this metadata are currently not reliable enough for highly diverse multimedia content. A reliable and automatic method for analyzing general multimedia content is needed. We introduce a domain-agnostic framework that annotates multimedia resources using currently available multimedia analysis methods. By using a three-step reasoning cycle, this framework can assess and improve the quality of multimedia analysis results, by consecutively (1) combining analysis results effectively, (2) predicting which results might need improvement, and (3) invoking compatible analysis methods to retrieve new results. By using semantic descriptions for the Web services that wrap the multimedia analysis methods, compatible services can be automatically selected. By using additional semantic reasoning on these semantic descriptions, the different services can be repurposed across different use cases. We evaluated this problem-agnostic framework in the context of video face detection, and showed that it is capable of providing the best analysis results regardless of the input video. The proposed methodology can serve as a basis to build a generic multimedia annotation platform, which returns reliable results for diverse multimedia analysis problems. This allows for better metadata generation, and improves the efficient retrieval of multimedia resources

    Discovering Class-Specific Pixels for Weakly-Supervised Semantic Segmentation

    Full text link
    We propose an approach to discover class-specific pixels for the weakly-supervised semantic segmentation task. We show that properly combining saliency and attention maps allows us to obtain reliable cues capable of significantly boosting the performance. First, we propose a simple yet powerful hierarchical approach to discover the class-agnostic salient regions, obtained using a salient object detector, which otherwise would be ignored. Second, we use fully convolutional attention maps to reliably localize the class-specific regions in a given image. We combine these two cues to discover class-specific pixels which are then used as an approximate ground truth for training a CNN. While solving the weakly supervised semantic segmentation task, we ensure that the image-level classification task is also solved in order to enforce the CNN to assign at least one pixel to each object present in the image. Experimentally, on the PASCAL VOC12 val and test sets, we obtain the mIoU of 60.8% and 61.9%, achieving the performance gains of 5.1% and 5.2% compared to the published state-of-the-art results. The code is made publicly available

    Selectively inhibiting learning bias for active sampling

    Get PDF
    Efficient training of machine learning algorithms requires a reliable labeled set from the application domain. Usually, data labeling is a costly process. Therefore, a selective approach is desirable. Active learning has been successfully used to reduce the labeling effort, due to its parsimonious process of querying the labeler. Nevertheless, many active learning strategies are dependent on early predictions made by learning algorithms. This might be a major problem when the learner is still unable to provide reliable information. In this context, agnostic strategies can be convenient, since they spare internal learners - usually favoring exploratory queries. On the other hand, prospective queries could benefit from a learning bias. In this article, we highlight the advantages of the agnostic approach and propose how to explore some of them without foregoing prospection. A simple hybrid strategy and a visualization tool called ranking curves, are proposed as a proof of concept. The tool allowed to see clearly when the presence of a learner was possibly detrimental. Finally, the hybrid strategy was successfully compared to its counterpart in the literature, to pure agnostic strategies and to the usual baseline of the field.CAPESCNPqFAPES
    corecore