158 research outputs found

    Automatic Speech Recognition for Low-resource Languages and Accents Using Multilingual and Crosslingual Information

    Get PDF
    This thesis explores methods to rapidly bootstrap automatic speech recognition systems for languages, which lack resources for speech and language processing. We focus on finding approaches which allow using data from multiple languages to improve the performance for those languages on different levels, such as feature extraction, acoustic modeling and language modeling. Under application aspects, this thesis also includes research work on non-native and Code-Switching speech

    Acoustic Approaches to Gender and Accent Identification

    Get PDF
    There has been considerable research on the problems of speaker and language recognition from samples of speech. A less researched problem is that of accent recognition. Although this is a similar problem to language identification, di�erent accents of a language exhibit more fine-grained di�erences between classes than languages. This presents a tougher problem for traditional classification techniques. In this thesis, we propose and evaluate a number of techniques for gender and accent classification. These techniques are novel modifications and extensions to state of the art algorithms, and they result in enhanced performance on gender and accent recognition. The first part of the thesis focuses on the problem of gender identification, and presents a technique that gives improved performance in situations where training and test conditions are mismatched. The bulk of this thesis is concerned with the application of the i-Vector technique to accent identification, which is the most successful approach to acoustic classification to have emerged in recent years. We show that it is possible to achieve high accuracy accent identification without reliance on transcriptions and without utilising phoneme recognition algorithms. The thesis describes various stages in the development of i-Vector based accent classification that improve the standard approaches usually applied for speaker or language identification, which are insu�cient. We demonstrate that very good accent identification performance is possible with acoustic methods by considering di�erent i-Vector projections, frontend parameters, i-Vector configuration parameters, and an optimised fusion of the resulting i-Vector classifiers we can obtain from the same data. We claim to have achieved the best accent identification performance on the test corpus for acoustic methods, with up to 90% identification rate. This performance is even better than previously reported acoustic-phonotactic based systems on the same corpus, and is very close to performance obtained via transcription based accent identification. Finally, we demonstrate that the utilization of our techniques for speech recognition purposes leads to considerably lower word error rates. Keywords: Accent Identification, Gender Identification, Speaker Identification, Gaussian Mixture Model, Support Vector Machine, i-Vector, Factor Analysis, Feature Extraction, British English, Prosody, Speech Recognition

    Acoustic model selection for recognition of regional accented speech

    Get PDF
    Accent is cited as an issue for speech recognition systems. Our experiments showed that the ASR word error rate is up to seven times greater for accented speech compared with standard British English. The main objective of this research is to develop Automatic Speech Recognition (ASR) techniques that are robust to accent variation. We applied different acoustic modelling techniques to compensate for the effects of regional accents on the ASR performance. For conventional GMM-HMM based ASR systems, we showed that using a small amount of data from a test speaker to choose an accent dependent model using an accent identification system, or building a model using the data from N neighbouring speakers in AID space, will result in superior performance compared to that obtained with unsupervised or supervised speaker adaptation. In addition we showed that using a DNN-HMM rather than a GMM-HMM based acoustic model would improve the recognition accuracy considerably. Even if we apply two stages of accent followed by speaker adaptation to the GMM-HMM baseline system, the GMM-HMM based system will not outperform the baseline DNN-HMM based system. For more contemporary DNN-HMM based ASR systems we investigated how adding different types of accented data to the training set can provide better recognition accuracy on accented speech. Finally, we proposed a new approach for visualisation of the AID feature space. This is helpful in analysing the AID recognition accuracies and analysing AID confusion matrices

    A Framework For Enhancing Speaker Age And Gender Classification By Using A New Feature Set And Deep Neural Network Architectures

    Get PDF
    Speaker age and gender classification is one of the most challenging problems in speech processing. Recently with developing technologies, identifying a speaker age and gender has become a necessity for speaker verification and identification systems such as identifying suspects in criminal cases, improving human-machine interaction, and adapting music for awaiting people queue. Although many studies have been carried out focusing on feature extraction and classifier design for improvement, classification accuracies are still not satisfactory. The key issue in identifying speaker’s age and gender is to generate robust features and to design an in-depth classifier. Age and gender information is concealed in speaker’s speech, which is liable for many factors such as, background noise, speech contents, and phonetic divergences. In this work, different methods are proposed to enhance the speaker age and gender classification based on the deep neural networks (DNNs) as a feature extractor and classifier. First, a model for generating new features from a DNN is proposed. The proposed method uses the Hidden Markov Model toolkit (HTK) tool to find tied-state triphones for all utterances, which are used as labels for the output layer in the DNN. The DNN with a bottleneck layer is trained in an unsupervised manner for calculating the initial weights between layers, then it is trained and tuned in a supervised manner to generate transformed mel-frequency cepstral coefficients (T-MFCCs). Second, the shared class labels method is introduced among misclassified classes to regularize the weights in DNN. Third, DNN-based speakers models using the SDC feature set is proposed. The speakers-aware model can capture the characteristics of the speaker age and gender more effectively than a model that represents a group of speakers. In addition, AGender-Tune system is proposed to classify the speaker age and gender by jointly fine-tuning two DNN models; the first model is pre-trained to classify the speaker age, and second model is pre-trained to classify the speaker gender. Moreover, the new T-MFCCs feature set is used as the input of a fusion model of two systems. The first system is the DNN-based class model and the second system is the DNN-based speaker model. Utilizing the T-MFCCs as input and fusing the final score with the score of a DNN-based class model enhanced the classification accuracies. Finally, the DNN-based speaker models are embedded into an AGender-Tune system to exploit the advantages of each method for a better speaker age and gender classification. The experimental results on a public challenging database showed the effectiveness of the proposed methods for enhancing the speaker age and gender classification and achieved the state of the art on this database

    Articulatory features for conversational speech recognition

    Get PDF

    Emotion recognition based on the energy distribution of plosive syllables

    Get PDF
    We usually encounter two problems during speech emotion recognition (SER): expression and perception problems, which vary considerably between speakers, languages, and sentence pronunciation. In fact, finding an optimal system that characterizes the emotions overcoming all these differences is a promising prospect. In this perspective, we considered two emotional databases: Moroccan Arabic dialect emotional database (MADED), and Ryerson audio-visual database on emotional speech and song (RAVDESS) which present notable differences in terms of type (natural/acted), and language (Arabic/English). We proposed a detection process based on 27 acoustic features extracted from consonant-vowel (CV) syllabic units: \ba, \du, \ki, \ta common to both databases. We tested two classification strategies: multiclass (all emotions combined: joy, sadness, neutral, anger) and binary (neutral vs. others, positive emotions (joy) vs. negative emotions (sadness, anger), sadness vs. anger). These strategies were tested three times: i) on MADED, ii) on RAVDESS, iii) on MADED and RAVDESS. The proposed method gave better recognition accuracy in the case of binary classification. The rates reach an average of 78% for the multi-class classification, 100% for neutral vs. other cases, 100% for the negative emotions (i.e. anger vs. sadness), and 96% for the positive vs. negative emotions

    Culture Clubs: Processing Speech by Deriving and Exploiting Linguistic Subcultures

    Full text link
    Spoken language understanding systems are error-prone for several reasons, including individual speech variability. This is manifested in many ways, among which are differences in pronunciation, lexical inventory, grammar and disfluencies. There is, however, a lot of evidence pointing to stable language usage within subgroups of a language population. We call these subgroups linguistic subcultures. The two broad problems are defined and a survey of the work in this space is performed. The two broad problems are: linguistic subculture detection, commonly performed via Language Identification, Accent Identification or Dialect Identification approaches; and speech and language processing tasks taken which may see increases in performance by modeling for each linguistic subculture. The data used in the experiments are drawn from four corpora: Accents of the British Isles (ABI), Intonational Variation in English (IViE), the NIST Language Recognition Evaluation Plan (LRE15) and Switchboard. The speakers in the corpora come from different parts of the United Kingdom and the United States and were provided different stimuli. From the speech samples, two features sets are used in the experiments. A number of experiments to determine linguistic subcultures are conducted. The set of experiments cover a number of approaches including the use traditional machine learning approaches shown to be effective for similar tasks in the past, each with multiple feature sets. State-of-the-art deep learning approaches are also applied to this problem. Two large automatic speech recognition (ASR) experiments are performed against all three corpora: one, monolithic experiment for all the speakers in each corpus and another for the speakers in groups according to their identified linguistic subcultures. For the discourse markers labeled in the Switchboard corpus, there are some interesting trends when examined through the lens of the speakers in their linguistic subcultures. Two large dialogue acts experiments are performed against the labeled portion of the Switchboard corpus: one, monocultural (or monolithic ) experiment for all the speakers in each corpus and another for the speakers in groups according to their identified linguistic subcultures. We conclude by discussing applications of this work, the changing landscape of natural language processing and suggestions for future research
    • …
    corecore