2,221 research outputs found

    Multi-objective optimization of a wing fence on an unmanned aerial vehicle using surrogate-derived gradients

    Get PDF
    In this paper, the multi-objective, multifidelity optimization of a wing fence on an unmanned aerial vehicle (UAV) near stall is presented. The UAV under consideration is characterized by a blended wing body (BWB), which increases its efficiency, and a tailless design, which leads to a swept wing to ensure longitudinal static stability. The consequence is a possible appearance of a nose-up moment, loss of lift initiating at the tips, and reduced controllability during landing, commonly referred to as tip stall. A possible solution to counter this phenomenon is wing fences: planes placed on top of the wing aligned with the flow and developed from the idea of stopping the transverse component of the boundary layer flow. These are optimized to obtain the design that would fence off the appearance of a pitch-up moment at high angles of attack, without a significant loss of lift and controllability. This brings forth a constrained multi-objective optimization problem. The evaluations are performed through unsteady Reynolds-Averaged Navier-Stokes (URANS) simulations. However, since controllability cannot be directly assessed through computational fluid dynamics (CFD), surrogate-derived gradients are used. An efficient global optimization framework is developed employing surrogate modeling, namely regressive co-Kriging, updated using a multi-objective formulation of the expected improvement. The result is a wing fence design that extends the flight envelope of the aircraft, obtained with a feasible computational budget

    Machine Learning and Deep Learning for the Built Heritage Analysis: Laser Scanning and UAV-Based Surveying Applications on a Complex Spatial Grid Structure

    Get PDF
    The reconstruction of 3D geometries starting from reality-based data is challenging and time-consuming due to the difficulties involved in modeling existing structures and the complex nature of built heritage. This paper presents a methodological approach for the automated segmentation and classification of surveying outputs to improve the interpretation and building information modeling from laser scanning and photogrammetric data. The research focused on the surveying of reticular, space grid structures of the late 19th–20th–21st centuries, as part of our architectural heritage, which might require monitoring maintenance activities, and relied on artificial intelligence (machine learning and deep learning) for: (i) the classification of 3D architectural components at multiple levels of detail and (ii) automated masking in standard photogrammetric processing. Focusing on the case study of the grid structure in steel named La Vela in Bologna, the work raises many critical issues in space grid structures in terms of data accuracy, geometric and spatial complexity, semantic classification, and component recognition

    Actuator Trajectory Planning for UAVs with Overhead Manipulator using Reinforcement Learning

    Full text link
    In this paper, we investigate the operation of an aerial manipulator system, namely an Unmanned Aerial Vehicle (UAV) equipped with a controllable arm with two degrees of freedom to carry out actuation tasks on the fly. Our solution is based on employing a Q-learning method to control the trajectory of the tip of the arm, also called end-effector. More specifically, we develop a motion planning model based on Time To Collision (TTC), which enables a quadrotor UAV to navigate around obstacles while ensuring the manipulator's reachability. Additionally, we utilize a model-based Q-learning model to independently track and control the desired trajectory of the manipulator's end-effector, given an arbitrary baseline trajectory for the UAV platform. Such a combination enables a variety of actuation tasks such as high-altitude welding, structural monitoring and repair, battery replacement, gutter cleaning, skyscrapper cleaning, and power line maintenance in hard-to-reach and risky environments while retaining compatibility with flight control firmware. Our RL-based control mechanism results in a robust control strategy that can handle uncertainties in the motion of the UAV, offering promising performance. Specifically, our method achieves 92% accuracy in terms of average displacement error (i.e. the mean distance between the target and obtained trajectory points) using Q-learning with 15,000 episode

    A Survey on Cellular-connected UAVs: Design Challenges, Enabling 5G/B5G Innovations, and Experimental Advancements

    Full text link
    As an emerging field of aerial robotics, Unmanned Aerial Vehicles (UAVs) have gained significant research interest within the wireless networking research community. As soon as national legislations allow UAVs to fly autonomously, we will see swarms of UAV populating the sky of our smart cities to accomplish different missions: parcel delivery, infrastructure monitoring, event filming, surveillance, tracking, etc. The UAV ecosystem can benefit from existing 5G/B5G cellular networks, which can be exploited in different ways to enhance UAV communications. Because of the inherent characteristics of UAV pertaining to flexible mobility in 3D space, autonomous operation and intelligent placement, these smart devices cater to wide range of wireless applications and use cases. This work aims at presenting an in-depth exploration of integration synergies between 5G/B5G cellular systems and UAV technology, where the UAV is integrated as a new aerial User Equipment (UE) to existing cellular networks. In this integration, the UAVs perform the role of flying users within cellular coverage, thus they are termed as cellular-connected UAVs (a.k.a. UAV-UE, drone-UE, 5G-connected drone, or aerial user). The main focus of this work is to present an extensive study of integration challenges along with key 5G/B5G technological innovations and ongoing efforts in design prototyping and field trials corroborating cellular-connected UAVs. This study highlights recent progress updates with respect to 3GPP standardization and emphasizes socio-economic concerns that must be accounted before successful adoption of this promising technology. Various open problems paving the path to future research opportunities are also discussed.Comment: 30 pages, 18 figures, 9 tables, 102 references, journal submissio

    Air Force Institute of Technology Research Report 1999

    Get PDF
    This report summarizes the research activities of the Air Force Institute of Technology’s Graduate School of Engineering and Management. It describes research interests and faculty expertise; lists student theses/dissertations; identifies research sponsors and contributions; and outlines the procedures for contacting the school. Included in the report are: faculty publications, conference presentations, consultations, and funded research projects. Research was conducted in the areas of Aeronautical and Astronautical Engineering, Electrical Engineering and Electro-Optics, Computer Engineering and Computer Science, Systems and Engineering Management, Operational Sciences, and Engineering Physics

    Modeling and Analysis of Unmanned Aerial Vehicle System Leveraging Systems Modeling Language (SysML)

    Get PDF
    The use of unmanned aerial vehicles (UAVs) has seen a significant increase over time in several industries such as defense, healthcare, and agriculture to name a few. Their affordability has made it possible for industries to venture and invest in UAVs for both research and commercial purposes. In spite of their recent popularity; there remain a number of difficulties in the design representation of UAVs, including low image analysis, high cost, and time consumption. In addition, it is challenging to represent systems of systems that require multiple UAVs to work in cooperation, sharing resources, and complementing other assets on the ground or in the air. As a means of compensating for these difficulties; in this study; we use a model-based systems engineering (MBSE) approach, in which standardized diagrams are used to model and design different systems and subsystems of UAVs. SysML is widely used to support the design and analysis of many different kinds of systems and ensures consistency between the design of the system and its documentation through the use of an object-oriented model. In addition, SysML supports the modeling of both hardware and software, which will ease the representation of both the system’s architecture and flow of information. The following paper will follow the Magic Grid methodology to model a UAV system across the SysML four pillars and integration of SysML model with external script-based simulation tools, namely, MATLAB and OpenMDAO. These pillars are expressed within standard diagram views to describe the structural, behavior, requirements, and parametric aspect of the UAV. Finally, the paper will demonstrate how to utilize the simulation capability of the SysML model to verify a functional requirement

    CONTENTS

    Get PDF
    • …
    corecore