163 research outputs found

    Addressing the Challenges in Federating Edge Resources

    Full text link
    This book chapter considers how Edge deployments can be brought to bear in a global context by federating them across multiple geographic regions to create a global Edge-based fabric that decentralizes data center computation. This is currently impractical, not only because of technical challenges, but is also shrouded by social, legal and geopolitical issues. In this chapter, we discuss two key challenges - networking and management in federating Edge deployments. Additionally, we consider resource and modeling challenges that will need to be addressed for a federated Edge.Comment: Book Chapter accepted to the Fog and Edge Computing: Principles and Paradigms; Editors Buyya, Sriram

    Wireless body area network mobility-aware task offloading scheme

    Get PDF
    The increasing amount of user equipment (UE) and the rapid advances in wireless body area networks bring revolutionary changes in healthcare systems. However, due to the strict requirements on size, reliability and battery lifetime of UE devices, it is difficult for them to execute latency sensitive or computation intensive tasks effectively. In this paper, we aim to enhance the UE computation capacity by utilizing small size coordinator-based mobile edge computing (C-MEC) servers. In this way, the system complexity, computation resources, and energy consumption are considerably transferred from the UE to the C-MEC, which is a practical approach since C-MEC is power charged, in contrast to the UE. First, the system architecture and the mobility model are presented. Second, several transmission mechanisms are analyzed along with the proposed mobility-aware cooperative task offloading scheme. Numerous selected performance metrics are investigated regarding the number of executed tasks, the percentage of failed tasks, average service time, and the energy consumption of each MEC. The results validate the advantage of task offloading schemes compared with the traditional relay-based technique regarding the number of executed tasks. Moreover, one can obtain that the proposed scheme archives noteworthy benefits, such as low latency and efficiently balance the energy consumption of C-MECs

    Mobile cloud computing and network function virtualization for 5g systems

    Get PDF
    The recent growth of the number of smart mobile devices and the emergence of complex multimedia mobile applications have brought new challenges to the design of wireless mobile networks. The envisioned Fifth-Generation (5G) systems are equipped with different technical solutions that can accommodate the increasing demands for high date rate, latency-limited, energy-efficient and reliable mobile communication networks. Mobile Cloud Computing (MCC) is a key technology in 5G systems that enables the offloading of computationally heavy applications, such as for augmented or virtual reality, object recognition, or gaming from mobile devices to cloudlet or cloud servers, which are connected to wireless access points, either directly or through finite-capacity backhaul links. Given the battery-limited nature of mobile devices, mobile cloud computing is deemed to be an important enabler for the provision of such advanced applications. However, computational tasks offloading, and due to the variability of the communication network through which the cloud or cloudlet is accessed, may incur unpredictable energy expenditure or intolerable delay for the communications between mobile devices and the cloud or cloudlet servers. Therefore, the design of a mobile cloud computing system is investigated by jointly optimizing the allocation of radio, computational resources and backhaul resources in both uplink and downlink directions. Moreover, the users selected for cloud offloading need to have an energy consumption that is smaller than the amount required for local computing, which is achieved by means of user scheduling. Motivated by the application-centric drift of 5G systems and the advances in smart devices manufacturing technologies, new brand of mobile applications are developed that are immersive, ubiquitous and highly-collaborative in nature. For example, Augmented Reality (AR) mobile applications have inherent collaborative properties in terms of data collection in the uplink, computing at the cloud, and data delivery in the downlink. Therefore, the optimization of the shared computing and communication resources in MCC not only benefit from the joint allocation of both resources, but also can be more efficiently enhanced by sharing the offloaded data and computations among multiple users. As a result, a resource allocation approach whereby transmitted, received and processed data are shared partially among the users leads to more efficient utilization of the communication and computational resources. As a suggested architecture in 5G systems, MCC decouples the computing functionality from the platform location through the use of software virtualization to allow flexible provisioning of the provided services. Another virtualization-based technology in 5G systems is Network Function Virtualization (NFV) which prescribes the instantiation of network functions on general-purpose network devices, such as servers and switches. While yielding a more flexible and cost-effective network architecture, NFV is potentially limited by the fact that commercial off-the-shelf hardware is less reliable than the dedicated network elements used in conventional cellular deployments. The typical solution for this problem is to duplicate network functions across geographically distributed hardware in order to ensure diversity. For that reason, the development of fault-tolerant virtualization strategies for MCC and NFV is necessary to ensure reliability of the provided services

    A review on green caching strategies for next generation communication networks

    Get PDF
    © 2020 IEEE. In recent years, the ever-increasing demand for networking resources and energy, fueled by the unprecedented upsurge in Internet traffic, has been a cause for concern for many service providers. Content caching, which serves user requests locally, is deemed to be an enabling technology in addressing the challenges offered by the phenomenal growth in Internet traffic. Conventionally, content caching is considered as a viable solution to alleviate the backhaul pressure. However, recently, many studies have reported energy cost reductions contributed by content caching in cache-equipped networks. The hypothesis is that caching shortens content delivery distance and eventually achieves significant reduction in transmission energy consumption. This has motivated us to conduct this study and in this article, a comprehensive survey of the state-of-the-art green caching techniques is provided. This review paper extensively discusses contributions of the existing studies on green caching. In addition, the study explores different cache-equipped network types, solution methods, and application scenarios. We categorically present that the optimal selection of the caching nodes, smart resource management, popular content selection, and renewable energy integration can substantially improve energy efficiency of the cache-equipped systems. In addition, based on the comprehensive analysis, we also highlight some potential research ideas relevant to green content caching
    • …
    corecore