313 research outputs found

    Collaborative HARQ Schemes for Cooperative Diversity Communications in Wireless Networks

    Get PDF
    Wireless technology is experiencing spectacular developments, due to the emergence of interactive and digital multimedia applications as well as rapid advances in the highly integrated systems. For the next-generation mobile communication systems, one can expect wireless connectivity between any devices at any time and anywhere with a range of multimedia contents. A key requirement in such systems is the availability of high-speed and robust communication links. Unfortunately, communications over wireless channels inherently suffer from a number of fundamental physical limitations, such as multipath fading, scarce radio spectrum, and limited battery power supply for mobile devices. Cooperative diversity (CD) technology is a promising solution for future wireless communication systems to achieve broader coverage and to mitigate wireless channels’ impairments without the need to use high power at the transmitter. In general, cooperative relaying systems have a source node multicasting a message to a number of cooperative relays, which in turn resend a processed version message to an intended destination node. The destination node combines the signal received from the relays, and takes into account the source’s original signal to decode the message. The CD communication systems exploit two fundamental features of the wireless medium: its broadcast nature and its ability to achieve diversity through independent channels. A variety of relaying protocols have been considered and utilized in cooperative wireless networks. Amplify and forward (AAF) and decode and forward (DAF) are two popular protocols, frequently used in the cooperative systems. In the AAF mode, the relay amplifies the received signal prior to retransmission. In the DAF mode, the relay fully decodes the received signal, re-encodes and forwards it to the destination. Due to the retransmission without decoding, AAF has the shortcoming that noise accumulated in the received signal is amplified at the transmission. DAF suffers from decoding errors that can lead to severe error propagation. To further enhance the quality of service (QoS) of CD communication systems, hybrid Automatic Repeat-reQuest (HARQ) protocols have been proposed. Thus, if the destination requires an ARQ retransmission, it could come from one of relays rather than the source node. This thesis proposes an improved HARQ scheme with an adaptive relaying protocol (ARP). Focusing on the HARQ as a central theme, we start by introducing the concept of ARP. Then we use it as the basis for designing three types of HARQ schemes, denoted by HARQ I-ARP, HARQ II-ARP and HARQ III-ARP. We describe the relaying protocols, (both AAF and DAF), and their operations, including channel access between the source and relay, the feedback scheme, and the combining methods at the receivers. To investigate the benefits of the proposed HARQ scheme, we analyze its frame error rate (FER) and throughput performance over a quasi-static fading channel. We can compare these with the reference methods, HARQ with AAF (HARQ-AAF) and HARQ with perfect distributed turbo codes (DTC), for which correct decoding is always assumed at the relay (HARQ-perfect DTC). It is shown that the proposed HARQ-ARP scheme can always performs better than the HARQ-AAF scheme. As the signal-to-noise ratio (SNR) of the channel between the source and relay increases, the performance of the proposed HARQ-ARP scheme approaches that of the HARQ-perfect DTC scheme

    Time diversity solutions to cope with lost packets

    Get PDF
    A dissertation submitted to Departamento de Engenharia Electrotécnica of Faculdade de Ciências e Tecnologia of Universidade Nova de Lisboa in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Engenharia Electrotécnica e de ComputadoresModern broadband wireless systems require high throughputs and can also have very high Quality-of-Service (QoS) requirements, namely small error rates and short delays. A high spectral efficiency is needed to meet these requirements. Lost packets, either due to errors or collisions, are usually discarded and need to be retransmitted, leading to performance degradation. An alternative to simple retransmission that can improve both power and spectral efficiency is to combine the signals associated to different transmission attempts. This thesis analyses two time diversity approaches to cope with lost packets that are relatively similar at physical layer but handle different packet loss causes. The first is a lowcomplexity Diversity-Combining (DC) Automatic Repeat reQuest (ARQ) scheme employed in a Time Division Multiple Access (TDMA) architecture, adapted for channels dedicated to a single user. The second is a Network-assisted Diversity Multiple Access (NDMA) scheme, which is a multi-packet detection approach able to separate multiple mobile terminals transmitting simultaneously in one slot using temporal diversity. This thesis combines these techniques with Single Carrier with Frequency Division Equalizer (SC-FDE) systems, which are widely recognized as the best candidates for the uplink of future broadband wireless systems. It proposes a new NDMA scheme capable of handling more Mobile Terminals (MTs) than the user separation capacity of the receiver. This thesis also proposes a set of analytical tools that can be used to analyse and optimize the use of these two systems. These tools are then employed to compare both approaches in terms of error rate, throughput and delay performances, and taking the implementation complexity into consideration. Finally, it is shown that both approaches represent viable solutions for future broadband wireless communications complementing each other.Fundação para a Ciência e Tecnologia - PhD grant(SFRH/BD/41515/2007); CTS multi-annual funding project PEst-OE/EEI/UI0066/2011, IT pluri-annual funding project PEst-OE/EEI/LA0008/2011, U-BOAT project PTDC/EEATEL/ 67066/2006, MPSat project PTDC/EEA-TEL/099074/2008 and OPPORTUNISTICCR project PTDC/EEA-TEL/115981/200

    Hybrid ARQ with parallel and serial concatenated convolutional codes for next generation wireless communications

    Get PDF
    This research focuses on evaluating the currently used FEC encoding-decoding schemes and improving the performance of error control systems by incorporating these schemes in a hybrid FEC-ARQ environment. Beginning with an overview of wireless communications and the various ARQ protocols, the thesis provides an in-depth explanation of convolutional encoding and Viterbi decoding, turbo (PCCC) and serial concatenated convolutional (SCCC) encoding with their respective MAP decoding strategies.;A type-II hybrid ARQ scheme with SCCCs is proposed for the first time and is a major contribution of this thesis. A vast improvement is seen in the BER performance of the successive individual FEC schemes discussed above. Also, very high throughputs can be achieved when these schemes are incorporated in an adaptive type-II hybrid ARQ system.;Finally, the thesis discusses the equivalence of the PCCCs and the SCCCs and proposes a technique to generate a hybrid code using both schemes

    Cross-layer hybrid automatic repeat request error control with turbo processing for wireless system

    Get PDF
    The increasing demand for wireless communication system requires an efficient design in wireless communication system. One of the main challenges is to design error control mechanism in noisy wireless channel. Forward Error Correction (FEC) and Automatic Repeat reQuest (ARQ) are two main error control mechanisms. Hybrid ARQ allows the use of either FEC or ARQ when required. The issues with existing Hybrid ARQ are reliability, complexity and inefficient design. Therefore, the design of Hybrid ARQ needs to be further improved in order to achieve performance close to the Shannon capacity. The objective of this research is to develop a Cross-Layer Design Hybrid ARQ defined as CLD_ARQ to further minimize error in wireless communication system. CLD_ARQ comprises of three main stages. First, a low complexity FEC defined as IRC_FEC for error detection and correction has been developed by using Irregular Repetition Code (IRC) with Turbo processing. The second stage is the enhancement of IRC_FEC defined as EM_IRC_FEC to improve the reliability of error detection by adopting extended mapping. The last stage is the development of efficient CLD_ARQ to include retransmission for error correction that exploits EM_IRC_FEC and ARQ. In the proposed design, serial iterative decoding and parallel iterative decoding are deployed in the error detection and correction. The performance of the CLD_ARQ is evaluated in the Additive White Gaussian Noise (AWGN) channel using EXtrinsic Information Transfer (EXIT) chart, bit error rate (BER) and throughput analysis. The results show significant Signal-to-Noise Ratio (SNR) gain from the theoretical limit at BER of 10-5. IRC_FEC outperforms Recursive Systematic Convolutional Code (RSCC) by SNR gain up to 7% due to the use of IRC as a simple channel coding code. The usage of CLD_ARQ enhances the SNR gain by 53% compared to without ARQ due to feedback for retransmission. The adoption of extended mapping in the CLD_ARQ improves the SNR gain up to 50% due to error detection enhancement. In general, the proposed CLD_ARQ can achieve low BER and close to the Shannon‘s capacity even in worse channel condition

    Using Channel Output Feedback to Increase Throughput in Hybrid-ARQ

    Full text link
    Hybrid-ARQ protocols have become common in many packet transmission systems due to their incorporation in various standards. Hybrid-ARQ combines the normal automatic repeat request (ARQ) method with error correction codes to increase reliability and throughput. In this paper, we look at improving upon this performance using feedback information from the receiver, in particular, using a powerful forward error correction (FEC) code in conjunction with a proposed linear feedback code for the Rayleigh block fading channels. The new hybrid-ARQ scheme is initially developed for full received packet feedback in a point-to-point link. It is then extended to various different multiple-antenna scenarios (MISO/MIMO) with varying amounts of packet feedback information. Simulations illustrate gains in throughput.Comment: 30 page
    corecore