32,524 research outputs found

    Yield-driven power-delay-optimal CMOS full-adder design complying with automotive product specifications of PVT variations and NBTI degradations

    Get PDF
    We present the detailed results of the application of mathematical optimization algorithms to transistor sizing in a full-adder cell design, to obtain the maximum expected fabrication yield. The approach takes into account all the fabrication process parameter variations specified in an industrial PDK, in addition to operating condition range and NBTI aging. The final design solutions present transistor sizing, which depart from intuitive transistor sizing criteria and show dramatic yield improvements, which have been verified by Monte Carlo SPICE analysis

    On the suitability and development of layout templates for analog layout reuse and layout-aware synthesis

    Get PDF
    Accelerating the synthesis of increasingly complex analog integrated circuits is key to bridge the widening gap between what we can integrate and what we can design while meeting ever-tightening time-to-market constraints. It is a well-known fact in the semiconductor industry that such goal can only be attained by means of adequate CAD methodologies, techniques, and accompanying tools. This is particularly important in analog physical synthesis (a.k.a. layout generation), where large sensitivities of the circuit performances to the many subtle details of layout implementation (device matching, loading and coupling effects, reliability, and area features are of utmost importance to analog designers), render complete automation a truly challenging task. To approach the problem, two directions have been traditionally considered, knowledge-based and optimization-based, both with their own pros and cons. Besides, recently reported solutions oriented to speed up the overall design flow by means of reuse-based practices or by cutting off time-consuming, error-prone spins between electrical and layout synthesis (a technique known as layout-aware synthesis), rely on a outstandingly rapid yet efficient layout generation method. This paper analyses the suitability of procedural layout generation based on templates (a knowledge-based approach) by examining the requirements that both layout reuse and layout-aware solutions impose, and how layout templates face them. The ability to capture the know-how of experienced layout designers and the turnaround times for layout instancing are considered main comparative aspects in relation to other layout generation approaches. A discussion on the benefit-cost trade-off of using layout templates is also included. In addition to this analysis, the paper delves deeper into systematic techniques to develop fully reusable layout templates for analog circuits, either for a change of the circuit sizing (i.e., layout retargeting) or a change of the fabrication process (i.e., layout migration). Several examples implemented with the Cadence's Virtuoso tool suite are provided as demonstration of the paper's contributions.Ministerio de Educación y Ciencia TEC2004-0175

    PowerPlanningDL: Reliability-Aware Framework for On-Chip Power Grid Design using Deep Learning

    Full text link
    With the increase in the complexity of chip designs, VLSI physical design has become a time-consuming task, which is an iterative design process. Power planning is that part of the floorplanning in VLSI physical design where power grid networks are designed in order to provide adequate power to all the underlying functional blocks. Power planning also requires multiple iterative steps to create the power grid network while satisfying the allowed worst-case IR drop and Electromigration (EM) margin. For the first time, this paper introduces Deep learning (DL)-based framework to approximately predict the initial design of the power grid network, considering different reliability constraints. The proposed framework reduces many iterative design steps and speeds up the total design cycle. Neural Network-based multi-target regression technique is used to create the DL model. Feature extraction is done, and the training dataset is generated from the floorplans of some of the power grid designs extracted from the IBM processor. The DL model is trained using the generated dataset. The proposed DL-based framework is validated using a new set of power grid specifications (obtained by perturbing the designs used in the training phase). The results show that the predicted power grid design is closer to the original design with minimal prediction error (~2%). The proposed DL-based approach also improves the design cycle time with a speedup of ~6X for standard power grid benchmarks.Comment: Published in proceedings of IEEE/ACM Design, Automation and Test in Europe Conference (DATE) 2020, 6 page

    A Survey of Prediction and Classification Techniques in Multicore Processor Systems

    Get PDF
    In multicore processor systems, being able to accurately predict the future provides new optimization opportunities, which otherwise could not be exploited. For example, an oracle able to predict a certain application\u27s behavior running on a smart phone could direct the power manager to switch to appropriate dynamic voltage and frequency scaling modes that would guarantee minimum levels of desired performance while saving energy consumption and thereby prolonging battery life. Using predictions enables systems to become proactive rather than continue to operate in a reactive manner. This prediction-based proactive approach has become increasingly popular in the design and optimization of integrated circuits and of multicore processor systems. Prediction transforms from simple forecasting to sophisticated machine learning based prediction and classification that learns from existing data, employs data mining, and predicts future behavior. This can be exploited by novel optimization techniques that can span across all layers of the computing stack. In this survey paper, we present a discussion of the most popular techniques on prediction and classification in the general context of computing systems with emphasis on multicore processors. The paper is far from comprehensive, but, it will help the reader interested in employing prediction in optimization of multicore processor systems

    A Fully-Integrated Quad-Band GSM/GPRS CMOS Power Amplifier

    Get PDF
    Concentric distributed active transformers (DAT) are used to implement a fully-integrated quad-band power amplifier (PA) in a standard 130 nm CMOS process. The DAT enables the power amplifier to integrate the input and output matching networks on the same silicon die. The PA integrates on-chip closed-loop power control and operates under supply voltages from 2.9 V to 5.5 V in a standard micro-lead-frame package. It shows no oscillations, degradation, or failures for over 2000 hours of operation with a supply of 6 V at 135° under a VSWR of 15:1 at all phase angles and has also been tested for more than 2 million device-hours (with ongoing reliability monitoring) without a single failure under nominal operation conditions. It produces up to +35 dBm of RF power with power-added efficiency of 51%
    corecore