339,902 research outputs found

    Fly-By-Wireless for Next Generation Aircraft: Challenges and Potential solutions

    Get PDF
    ”Fly-By-Wireless” paradigm based on wireless connectivity in aircraft has the potential to improve efficiency and flexibility, while reducing weight, fuel consumption and maintenance costs. In this paper, first, the opportunities and challenges for wireless technologies in safety-critical avionics context are discussed. Then, the assessment of such technologies versus avionics requirements is provided in order to select the most appropriate one for a wireless aircraft application. As a result, the design of a Wireless Avionics Network based on Ultra WideBand technology is investigated, considering the issues of determinism, reliability and security

    Electricity from photovoltaic solar cells: Flat-Plate Solar Array Project final report. Volume VI: Engineering sciences and reliability

    Get PDF
    The Flat-Plate Solar Array (FSA) Project, funded by the U.S. Government and managed by the Jet Propulsion Laboratory, was formed in 1975 to develop the module/array technology needed to attain widespread terrestrial use of photovoltaics by 1985. To accomplish this, the FSA Project established and managed an Industry, University, and Federal Government Team to perform the needed research and development. This volume of the series of final reports documenting the FSA Project deals with the Project's activities directed at developing the engineering technology base required to achieve modules that meet the functional, safety and reliability requirements of large-scale terrestrial photovoltaic systems applications. These activities included: (1) development of functional, safety, and reliability requirements for such applications; (2) development of the engineering analytical approaches, test techniques, and design solutions required to meet the requirements; (3) synthesis and procurement of candidate designs for test and evaluation; and (4) performance of extensive testing, evaluation, and failure analysis to define design shortfalls and, thus, areas requiring additional research and development. During the life of the FSA Project, these activities were known by and included a variety of evolving organizational titles: Design and Test, Large-Scale Procurements, Engineering, Engineering Sciences, Operations, Module Performance and Failure Analysis, and at the end of the Project, Reliability and Engineering Sciences. This volume provides both a summary of the approach and technical outcome of these activities and provides a complete Bibliography (Appendix A) of the published documentation covering the detailed accomplishments and technologies developed

    Short Block-length Codes for Ultra-Reliable Low-Latency Communications

    Full text link
    This paper reviews the state of the art channel coding techniques for ultra-reliable low latency communication (URLLC). The stringent requirements of URLLC services, such as ultra-high reliability and low latency, have made it the most challenging feature of the fifth generation (5G) mobile systems. The problem is even more challenging for the services beyond the 5G promise, such as tele-surgery and factory automation, which require latencies less than 1ms and failure rate as low as 10910^{-9}. The very low latency requirements of URLLC do not allow traditional approaches such as re-transmission to be used to increase the reliability. On the other hand, to guarantee the delay requirements, the block length needs to be small, so conventional channel codes, originally designed and optimised for moderate-to-long block-lengths, show notable deficiencies for short blocks. This paper provides an overview on channel coding techniques for short block lengths and compares them in terms of performance and complexity. Several important research directions are identified and discussed in more detail with several possible solutions.Comment: Accepted for publication in IEEE Communications Magazin

    Improving Gold/Gold Microcontact Performance and Reliability Under Low-Frequency AC Through Circuit Loading

    Get PDF
    This paper investigates the performance and reliability of microcontacts under low-frequency and low-amplitude ac test conditions. Current microcontact theory is based on dc tests adapted to RF applications. To help better apply dc theory to RF applications, frequencies between 100 Hz to 100 kHz were experimentally investigated. Microcontacts designed to conduct performance and reliability measurements were used, which in prior dc testing typically lasted for 100 million cycles or more. Under ac loads, at similar power levels, eight devices were tested under cold-switching conditions, and only one was still operational at 10 million cycles. The effect of external circuitry on dc loaded devices was also considered. The experimental data were presented for dc conditions, which demonstrated that both a parallel capacitance with a microcontact and a series inductance were highly detrimental. For all six tested devices, failure occurred typically in 100 thousand cycles or less. However, utilizing series resistive/capacitive circuits as well as parallel resistor/inductive resulted in improved performance, with only one device of the four tested failing prematurely, but those that lasted showed less variation in measure contact resistance throughout the lifetime of the device. Two devices were tested with passive contact protection using parallel and series resistances, and both devices lasted for the full test duration. Finally, the effects of applying circuit protection to microcontacts and repeating ac test conditions were investigated. Reliability and device lifetime were extended significantly (9.1% success rate without protection was increased to 87% success rate). It was also observed in several instances that devices that failed showed subtle signs of variance during contact closure measurements in the range of 5-30 μ N, indicating a possible means for accurately predicting device failure. For these failed devices, notable physical damage was observed using a scanning electron microscope

    Millimeter wave satellite concepts. Volume 1: Executive summary

    Get PDF
    The objectives of the program were: (1) development of methodology based on the technical requirements of potential services that might be assigned to millimeter wave bands for identifying the viable and appropriate technologies for future NASA millimeter research and development programs, and (2) testing of this methodology with user applications and services. The scope of the program included the entire communications network, both ground and space subsystems. The reports include: (1) cost, weight, and performance models for the subsystems, (2) conceptual design for point-to-point and broadcast communications satellites, (3) analytic relationships between subsystem parameters and an overall link performance, (4) baseline conceptual systems, (5) sensitivity studies, (6) model adjustment analyses, (7) identification of critical technologies and their risks, (8) brief R&D program scenarios for the technologies judged to be moderate or extensive risks

    A field study of team working in a new human supervisory control system

    Get PDF
    This paper presents a case study of an investigation into team behaviour in an energy distribution company. The main aim was to investigate the impact of major changes in the company on system performance, comprising human and technical elements. A socio-technical systems approach was adopted. There were main differences between the teams investigated in the study: the time of year each control room was studied (i.e. summer or winter),the stage of development each team was in (i.e. 10 months), and the team structure (i.e. hierarchical or heterarchical). In all other respects the control rooms were the same: employing the same technology and within the same organization. The main findings were: the teams studied in the winter months were engaged in more `planning’ and `awareness’ type of activities than those studies in the summer months. Newer teams seem to be engaged in more sharing of information than older teams, which maybe indicative of the development process. One of the hierarchical teams was engaged in more `system-driven’ activities than the heterarchical team studied at the same time of year. Finally, in general, the heterarchical team perceived a greater degree of team working culture than its hierarchical counterparts. This applied research project confirms findings from laboratory research and emphasizes the importance of involving ergonomics in the design of team working in human supervisory control

    Millimeter wave satellite concepts, volume 1

    Get PDF
    The identification of technologies necessary for development of millimeter spectrum communication satellites was examined from a system point of view. Development of methodology based on the technical requirements of potential services that might be assigned to millimeter wave bands for identifying the viable and appropriate technologies for future NASA millimeter research and development programs, and testing of this methodology with selected user applications and services were the goals of the program. The entire communications network, both ground and space subsystems was studied. Cost, weight, and performance models for the subsystems, conceptual design for point-to-point and broadcast communications satellites, and analytic relationships between subsystem parameters and an overall link performance are discussed along with baseline conceptual systems, sensitivity studies, model adjustment analyses, identification of critical technologies and their risks, and brief research and development program scenarios for the technologies judged to be moderate or extensive risks. Identification of technologies for millimeter satellite communication systems, and assessment of the relative risks of these technologies, was accomplished through subsystem modeling and link optimization for both point-to-point and broadcast applications
    corecore