18,312 research outputs found

    Energy Efficient System for Wireless Sensor Networks using Modified RECHS Protocol

    Get PDF
    The area of wireless sensor networks (WSNs) is one of the emerging and fast growing fields in the scientific world. This has brought about developing low cost, low-power and multi-function sensor nodes. Prolonged network lifetime, scalability, node mobility and load balancing are important requirements for many WSN applications. Clustering the sensor nodes is an effective technique to achieve these goals. Cluster-based routing protocol is currently a hot research in wireless sensor network. In this paper, we have added additional criteria for the selection of cluster heads in a Redundant and Energy-efficient Cluster head Selection Protocol(RECHS) and compared results with Energy Aware Low Energy Adaptive Clustering Hierarchy (EA-LEACH) protocol. This modified RECHS significantly increases the lifetime, reliability of the network. Simulation results show that comparison between two methods (Modified RECHS and EA- LEACH) for LEACH protocol on the basis of network lifetime (stability period), number of cluster heads are present per round, number of alive node are present per round and throughput of data transfer in the network. DOI: 10.17762/ijritcc2321-8169.15016

    Wireless industrial monitoring and control networks: the journey so far and the road ahead

    Get PDF
    While traditional wired communication technologies have played a crucial role in industrial monitoring and control networks over the past few decades, they are increasingly proving to be inadequate to meet the highly dynamic and stringent demands of today’s industrial applications, primarily due to the very rigid nature of wired infrastructures. Wireless technology, however, through its increased pervasiveness, has the potential to revolutionize the industry, not only by mitigating the problems faced by wired solutions, but also by introducing a completely new class of applications. While present day wireless technologies made some preliminary inroads in the monitoring domain, they still have severe limitations especially when real-time, reliable distributed control operations are concerned. This article provides the reader with an overview of existing wireless technologies commonly used in the monitoring and control industry. It highlights the pros and cons of each technology and assesses the degree to which each technology is able to meet the stringent demands of industrial monitoring and control networks. Additionally, it summarizes mechanisms proposed by academia, especially serving critical applications by addressing the real-time and reliability requirements of industrial process automation. The article also describes certain key research problems from the physical layer communication for sensor networks and the wireless networking perspective that have yet to be addressed to allow the successful use of wireless technologies in industrial monitoring and control networks

    Real-life performance of protocol combinations for wireless sensor networks

    Get PDF
    Wireless sensor networks today are used for many and diverse applications like nature monitoring, or process and wireless building automation. However, due to the limited access to large testbeds and the lack of benchmarking standards, the real-life evaluation of network protocols and their combinations remains mostly unaddressed in current literature. To shed further light upon this matter, this paper presents a thorough experimental performance analysis of six protocol combinations for TinyOS. During these protocol assessments, our research showed that the real-life performance often differs substantially from the expectations. Moreover, we found that combining protocols is far from trivial, as individual network protocols may perform very different in combination with other protocols. The results of our research emphasize the necessity of a flexible generic benchmarking framework, powerful enough to evaluate and compare network protocols and their combinations in different use cases
    • …
    corecore