44,436 research outputs found

    Locating and Protecting Facilities Subject to Random Disruptions and Attacks

    Get PDF
    Recent events such as the 2011 Tohoku earthquake and tsunami in Japan have revealed the vulnerability of networks such as supply chains to disruptive events. In particular, it has become apparent that the failure of a few elements of an infrastructure system can cause a system-wide disruption. Thus, it is important to learn more about which elements of infrastructure systems are most critical and how to protect an infrastructure system from the effects of a disruption. This dissertation seeks to enhance the understanding of how to design and protect networked infrastructure systems from disruptions by developing new mathematical models and solution techniques and using them to help decision-makers by discovering new decision-making insights. Several gaps exist in the body of knowledge concerning how to design and protect networks that are subject to disruptions. First, there is a lack of insights on how to make equitable decisions related to designing networks subject to disruptions. This is important in public-sector decision-making where it is important to generate solutions that are equitable across multiple stakeholders. Second, there is a lack of models that integrate system design and system protection decisions. These models are needed so that we can understand the benefit of integrating design and protection decisions. Finally, most of the literature makes several key assumptions: 1) protection of infrastructure elements is perfect, 2) an element is either fully protected or fully unprotected, and 3) after a disruption facilities are either completely operational or completely failed. While these may be reasonable assumptions in some contexts, there may exist contexts in which these assumptions are limiting. There are several difficulties with filling these gaps in the literature. This dissertation describes the discovery of mathematical formulations needed to fill these gaps as well as the identification of appropriate solution strategies

    Wireless body sensor networks for health-monitoring applications

    Get PDF
    This is an author-created, un-copyedited version of an article accepted for publication in Physiological Measurement. The publisher is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at http://dx.doi.org/10.1088/0967-3334/29/11/R01

    Multiobjective optimization of water distribution systems accounting for economic cost, hydraulic reliability, and greenhouse gas emissions

    Get PDF
    In this paper, three objectives are considered for the optimization of water distribution systems (WDSs): the traditional objectives of minimizing economic cost and maximizing hydraulic reliability and the recently proposed objective of minimizing greenhouse gas (GHG) emissions. It is particularly important to include the GHG minimization objective for WDSs involving pumping into storages or water transmission systems (WTSs), as these systems are the main contributors of GHG emissions in the water industry. In order to better understand the nature of tradeoffs among these three objectives, the shape of the solution space and the location of the Pareto-optimal front in the solution space are investigated for WTSs and WDSs that include pumping into storages, and the implications of the interaction between the three objectives are explored from a practical design perspective. Through three case studies, it is found that the solution space is a U-shaped curve rather than a surface, as the tradeoffs among the three objectives are dominated by the hydraulic reliability objective. The Pareto-optimal front of real-world systems is often located at the "elbow" section and lower "arm" of the solution space (i.e., the U-shaped curve), indicating that it is more economic to increase the hydraulic reliability of these systems by increasing pipe capacity (i.e., pipe diameter) compared to increasing pumping power. Solutions having the same GHG emission level but different cost-reliability tradeoffs often exist. Therefore, the final decision needs to be made in conjunction with expert knowledge and the specific budget and reliability requirements of the system. © 2013. American Geophysical Union. All Rights Reserved.Wenyan Wu, Holger R. Maier, and Angus R. Simpso

    Models, Theoretical Properties, and Solution Approaches for Stochastic Programming with Endogenous Uncertainty

    Get PDF
    In a typical optimization problem, uncertainty does not depend on the decisions being made in the optimization routine. But, in many application areas, decisions affect underlying uncertainty (endogenous uncertainty), either altering the probability distributions or the timing at which the uncertainty is resolved. Stochastic programming is a widely used method in optimization under uncertainty. Though plenty of research exists on stochastic programming where decisions affect the timing at which uncertainty is resolved, much less work has been done on stochastic programming where decisions alter probability distributions of uncertain parameters. Therefore, we propose methodologies for the latter category of optimization under endogenous uncertainty and demonstrate their benefits in some application areas. First, we develop a data-driven stochastic program (integrates a supervised machine learning algorithm to estimate probability distributions of uncertain parameters) for a wildfire risk reduction problem, where resource allocation decisions probabilistically affect uncertain human behavior. The nonconvex model is linearized using a reformulation approach. To solve a realistic-sized problem, we introduce a simulation program to efficiently compute the recourse objective value for a large number of scenarios. We present managerial insights derived from the results obtained based on Santa Fe National Forest data. Second, we develop a data-driven stochastic program with both endogenous and exogenous uncertainties with an application to combined infrastructure protection and network design problem. In the proposed model, some first-stage decision variables affect probability distributions, whereas others do not. We propose an exact reformulation for linearizing the nonconvex model and provide a theoretical justification of it. We designed an accelerated L-shaped decomposition algorithm to solve the linearized model. Results obtained using transportation networks created based on the southeastern U.S. provide several key insights for practitioners in using this proposed methodology. Finally, we study submodular optimization under endogenous uncertainty with an application to complex system reliability. Specifically, we prove that our stochastic program\u27s reliability maximization objective function is submodular under some probability distributions commonly used in reliability literature. Utilizing the submodularity, we implement a continuous approximation algorithm capable of solving large-scale problems. We conduct a case study demonstrating the computational efficiency of the algorithm and providing insights

    High-Tech Urban Agriculture in Amsterdam : An Actor Network Analysis

    Get PDF
    The agriculture and horticulture sector in the Netherlands is one of the most productive in the world. Although the sector is one of the most advanced and intense agricultural production systems worldwide, it faces challenges, such as climate change and environmental and social unsustainability of industrial production. To overcome these challenges, alternative food production initiatives have emerged, especially in large cities such as Amsterdam. Some initiatives involve producing food in the urban environment, supported by new technologies and practices, so-called high-tech urban agriculture (HTUA). These initiatives make cultivation of plants inside and on top of buildings possible and increase green spaces in urban areas. The emerging agricultural technologies are creating new business environments that are shape d by technology developers (e.g., suppliers of horticultural light emitting diodes (LED) and control environment systems) and developers of alternative food production practices (e.g., HTUA start-ups). However, research shows that the uptake of these technological innovations in urban planning processes is problematic. Therefore, this research analyzes the barriers that local government planners and HTUA developers are facing in the embedding of HTUA in urban planning processes, using the city of Amsterdam as a case study. This study draws on actor-network theory (ANT) to analyze the interactions between planners, technologies, technology developers and developers of alternative food production practices. Several concepts of ANT are integrated into a multi-level perspective on sustainability transitions (MLP) to create a new theoretical framework that can explain how interactions between technologies and planning actors transform the incumbent social\u2013technical regime. The configuration of interactions between social and material entities in technology development and adoption processes in Amsterdam is analyzed through the lens of this theoretical framework. The data in this study were gathered by tracing actors and their connections by using ethnographic research methods. In the course of the integration of new technologies into urban planning practices, gaps between technologies, technology developers, and planning actors have been identified. The results of this study show a lacking connection between planning actors and technology developers, although planning actors do interact with developers of alternative food production practices. These interactions are influenced by agency of artefacts such as visualizations of the future projects. The paper concludes that for the utilization of emerging technologies for sustainability transition of cities, the existing gap between technology developers and planning actors needs to be bridged through the integration of technology development visions in urban agendas and planning processe

    Optimization Approaches To Protect Transportation Infrastructure Against Strategic and Random Disruptions

    Get PDF
    Past and recent events have proved that critical infrastructure are vulnerable to natural catastrophes, unintentional accidents and terrorist attacks. Protecting these systems is critical to avoid loss of life and to guard against economical upheaval. A systematic approach to plan security investments is paramount to guarantee that limited protection resources are utilized in the most effcient manner. This thesis provides a detailed review of the optimization models that have been introduced in the past to identify vulnerabilities and protection plans for critical infrastructure. The main objective of this thesis is to study new and more realistic models to protect transportation infrastructure such as railway and road systems against man made and natural disruptions. Solution algorithms are devised to effciently solve the complex formulations proposed. Finally, several illustrative case studies are analysed to demonstrate how solving these models can be used to support effcient protection decisions

    Developing lean and responsive supply chains : a robust model for alternative risk mitigation strategies in supply chain designs

    Get PDF
    This paper investigates how organization should design their supply chains (SCs) and use risk mitigation strategies to meet different performance objectives. To do this, we develop two mixed integer nonlinear (MINL) lean and responsive models for a four-tier SC to understand these four strategies: i) holding back-up emergency stocks at the DCs, ii) holding back-up emergency stock for transshipment to all DCs at a strategic DC (for risk pooling in the SC), iii) reserving excess capacity in the facilities, and iv) using other facilities in the SC’s network to back-up the primary facilities. A new method for designing the network is developed which works based on the definition of path to cover all possible disturbances. To solve the two proposed MINL models, a linear regression approximation is suggested to linearize the models; this technique works based on a piecewise linear transformation. The efficiency of the solution technique is tested for two prevalent distribution functions. We then explore how these models operate using empirical data from an automotive SC. This enables us to develop a more comprehensive risk mitigation framework than previous studies and show how it can be used to determine the optimal SC design and risk mitigation strategies given the uncertainties faced by practitioners and the performance objectives they wish to meet

    Componential coding in the condition monitoring of electrical machines Part 2: application to a conventional machine and a novel machine

    Get PDF
    This paper (Part 2) presents the practical application of componential coding, the principles of which were described in the accompanying Part 1 paper. Four major issues are addressed, including optimization of the neural network, assessment of the anomaly detection results, development of diagnostic approaches (based on the reconstruction error) and also benchmarking of componential coding with other techniques (including waveform measures, Fourier-based signal reconstruction and principal component analysis). This is achieved by applying componential coding to the data monitored from both a conventional induction motor and from a novel transverse flux motor. The results reveal that machine condition monitoring using componential coding is not only capable of detecting and then diagnosing anomalies but it also outperforms other conventional techniques in that it is able to separate very small and localized anomalies
    corecore