95 research outputs found

    Integrated Circuits Based on 300 GHz fT Metamorphic HEMT Technology for Millimeter-Wave and Mixed-Signal Applications

    Get PDF
    Advanced circuits based on metamorphic HEMT (MHEMT)technologies on 4 โ€GaAs substrates for both millimeter-wave,and mixed- signal applications are presented.Extrinsic cut-off frequencies of ft =293 GHz and fmax =337 GHz were achieved for a 70 nm gate length metamorphic HEMT echnology.The MMIC process obtains high yield on transistor and circuit level.Single-stage low-noise amplifiers demonstrate a small signal gain of 13 dB and a noise figure of 2.8 dB at 94 GHz.An amplifier MMIC developed for D-Band operation features a gain of 15 dB at 160 GHz.The achieved results are comparable to state- of-the-art InP-based HEMT technologies.In order to realize 80 Gbit/s digital circuits,a process with 100 nm gate length enhancement type HEMTs with a transit frequency of 200 GHz is used.Three metalization layers are available for interconnects.The parasitic capacitance of the interconnects is kept low by using BCB and plated air bridge technology.Based on this process,static and dynamic frequency dividers achieve a maximu toggle frequency of 70 GHz and 108 GHz,respectively

    An Overview of Solid-State Integrated Circuit Amplifiers in the Submillimeter-Wave and THz Regime

    Get PDF
    We present an overview of solid-state integrated circuit amplifiers approaching terahertz frequencies based on the latest device technologies which have emerged in the past several years. Highlights include the best reported data from heterojunction bipolar transistor (HBT) circuits, high electron mobility transistor (HEMT) circuits, and metamorphic HEMT (mHEMT) amplifier circuits. We discuss packaging techniques for the various technologies in waveguide modules and describe the best reported noise figures measured in these technologies. A consequence of THz transistors, namely ultra-low-noise at cryogenic temperatures, will be explored and results presented. We also present a short review of power amplifier technologies for the THz regime. Finally, we discuss emerging materials for THz amplifiers into the next decade

    Next generation optical receivers : integration and new materials platform

    Get PDF
    Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, 2004.Includes bibliographical references (leaves 77-81).Future growth of optical communication into new application and market space is highly dependent on the ability of optical receivers to increase functionality while reducing price and physical size. Current hybrid receiver technology is inadequate in meeting the cost and performance demands of future market. Monolithic integration and new material systems are potential solutions and have been the focus of research investigation. This thesis summarizes the research progress of monolithic integration on InP, and the achievements in realizing 1.55[micro]m photodetector on GaAs and Si and their potentials for monolithic opto-electronic integrated circuits. The overall trend for next generation receivers is to move towards higher levels of integration, with investigation in new material systems that have the potentials for lower cost and larger scale integration. The impact of monolithic integration optical receiver components is analyzed in a cost analysis model.by Yiwen Zhang.M.Eng

    3-5์กฑ ํ™”ํ•ฉ๋ฌผ ๋ฐ˜๋„์ฒด์˜ ์›จ์ดํผ ์ ‘ํ•ฉ๊ณผ ์—ํ”ผํƒ์…œ ๋ฆฌํ”„ํŠธ ์˜คํ”„๋ฅผ ํ†ตํ•œ ๋‹ค์ค‘ ํŒŒ์žฅ ๊ด‘ ๊ฒ€์ถœ๊ธฐ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์žฌ๋ฃŒ๊ณตํ•™๋ถ€, 2019. 2. ์œค์˜์ค€.Group III-V compound semiconductors, having a band gap from ultraviolet to infrared regions, have been widely used as imagers to visualize a single band. With the recent arrival of the Internet-of-things (IOTs) era, new applications such as time of flight (TOF) sensors, normalized difference vegetation index (NVDI) and night vision systems have gained interest. Therefore, the importance of multicolor photodetectors is raised. To implement multicolor photodetectors, an epitaxy method has been commonly used with III-V compound semiconductors. For example, quantum wells, quantum dots and type-II based structures and metamorphically grown bulk heteroepitaxial structures have been employed. Although an epitaxy method seems to be quite simple, there are several problems including limitation of material choice due to the discrepancy of lattice constants between thin films and substrates, performance degradation originated from internal defects and complexity of growth. Therefore, to avoid these disadvantages of the epitaxy method, a heterogeneous integration method has been an alternative because the integration of devices grown on different substrates is possible. Thus, it has been considered to be a promising method to combine photodetectors with simple bulk structures. However, although there is a significant advantage to the heterogeneous integration method, current multicolor photodetectors have exhibited limitations regarding pixel density and vertical misalignment due to problems related to conventional integration methods. Therefore, in this thesis, the heterogeneous integration of III-V compound semiconductors was investigated for fabricating multicolor photodetectors with high pixel density and highly accurate alignment. Firstly, a research on heterogeneous integration of GaAs based thin film devices with other substrates was carried out. We studied wafer bonding and epitaxial lift off process which have advantages including large area transferability, cost-effectiveness and high quality of layers compared with wafer splitting and transfer printing methods. To fabricate multicolor photodetectors on single substrates, a stable rigid-to-rigid heterogeneous integration method is highly required. However, there have only been few reports regarding rigid-to-rigid transfer by using epitaxial lift off due to the difficulty involving byproducts and gas bubbles generated during the wet etching of the sacrificial layer for wafer separation. This has been a hindrance compared with thin film on flexible substrates which can accelerate wafer separation by using strain and external equipment. In order to overcome this problem, high throughput epitaxial lift off process was proposed through a pre-patterning process and surface hydrophilization. The pre-patterning process can maximize the etching area of the AlAs sacrificial layer and rapidly remove bubbles. In addition, acetone, which is a hydrophilic solution, was mixed with hydrofluoric acid in order to reduce the surface contact angle and viscosity. It resulted in an effective penetration of the etching solution and the suppression of byproducts. Consequently, it was possible to transfer GaAs thin films on rigid substrates within 30 minutes for a 2 inch wafer which has been the fastest compared with previous reports. Also, using this template, electronic and optoelectronic devices were successfully fabricated and operated. Secondly, we have studied to overcome restrictions of bulk photodetector for InSb binary material including the detection limit and cryogenic operation. To extend the detection limit of bulk InSb toward the LWIR range, the ideal candidate of III-V bulk materials is indium arsenide antimonide (InAsSb) material due to its corresponding band gaps ranging from SWIR to LWIR. By combining bulk InAsSb with other bulk materials with previously developed integration methods, we could ultimately fabricate a multicolor photodetector ranging from ultraviolet to LWIR with only bulk structures. Thus, in order to verify the viability of this material, a p-i-n structure based photodetector with an InAs0.81Sb0.19 absorption layer was grown on a GaAs substrate. To enhance an ability to be operated at a high temperature, an optimum InAlSb barrier layer was designed by technology computer aided design (TCAD). Also, InAsSb/InAlSb heterojunction photodetector was grown by molecular beam epitaxy (MBE). As a result, we have demonstrated the first room temperature operation of heterojunction photodetectors in MWIR range among InAsSb photodetectors with similar Sb compositions. Additionally, it has a higher responsivity of 15 mA/W compared with commercialized photodetectors. This MWIR photodetector with room temperature operability could help the reduction of the volume for final detector systems due to the elimination of Dewar used in InSb photodetectors. In other words, from this experiments, it is suggested that there is a strong potential of InAsSb bulk structures for detecting LWIR. Finally, the study on the monolithic integration was carried out to verify the feasibility of multicolor photodetectors by integration of bulk structures. Among procured photodetectors with detection ranging from visible to MWIR at room temperature operation, visible GaAs and near-infrared InGaAs photodetector were used for establishing the optimized fabrication process due to materials process maturity. By using previously developed high throughput ELO process, GaAs photodetectors were transferred onto InGaAs photodetectors to form visible/near-infrared multicolor photodetectors. It was found that top GaAs PD and bottom InGaAs PD were vertically well aligned without an off-axis tilt in x-ray diffraction (XRD) measurement. Also, similar dark currents of each photodetector were observed compared with reference photodetectors. Finally, with incidence of laser illumination, photoresponses were clearly revealed in visible band and near-infrared band of material characteristics, respectively. These results suggested high throughput ELO process enables the monolithic integration of bulk based multicolor photodetectors on a single substrate with high pixel density and nearly perfect vertical alignment. In the future, depending on the target applications, photodetectors with desired wavelengths could be simply grown as bulk structures and fabricated for multicolor imagers.์ž์™ธ์„ ๋ถ€ํ„ฐ ์ ์™ธ์„  ์˜์—ญ์˜ ๋ฐด๋“œ๊ฐญ์„ ๊ฐ€์ง„ 3-5์กฑ ํ™”ํ•ฉ๋ฌผ ๋ฐ˜๋„์ฒด๋Š” ๋‹จ์ผ ํŒŒ์žฅ๋Œ€์—ญ์„ ์‹œ๊ฐํ™”ํ•˜๋Š” imager ๋กœ ๋„๋ฆฌ ์‚ฌ์šฉ๋˜๊ณ  ์žˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜, ์ตœ๊ทผ ์‚ฌ๋ฌผ์ธํ„ฐ๋„ท ์‹œ๋Œ€๊ฐ€ ๋„๋ž˜ํ•จ์— ๋”ฐ๋ผ, time of flight (TOF) ์„ผ์„œ, ์‹์ƒ์ง€์ˆ˜ ์ธก์ •, night vision ๋“ฑ์˜ ์ƒˆ๋กœ์šด ์‘์šฉ์ฒ˜๊ฐ€ ์ฆ๊ฐ€ํ•˜๊ณ  ์žˆ๋‹ค. ๋”ฐ๋ผ์„œ ๊ธฐ์กด์˜ ๋‹จ์ผํŒŒ์žฅ ๊ด‘ ๊ฒ€์ถœ๊ธฐ๊ฐ€ ์•„๋‹Œ, ๋‹ค์ค‘ํŒŒ์žฅ ๊ด‘ ๊ฒ€์ถœ๊ธฐ์˜ ์ค‘์š”์„ฑ์ด ์ฆ๋Œ€๋˜๊ณ  ์žˆ์œผ๋ฉฐ, ์ด๋Ÿฐ ๋‹ค์ค‘ํŒŒ์žฅ ๊ด‘ ๊ฒ€์ถœ๊ธฐ๋ฅผ ๊ตฌํ˜„ํ•˜๊ธฐ ์œ„ํ•ด์„œ 3-5์กฑ์„ ํ™”ํ•ฉ๋ฌผ ๋ฐ˜๋„์ฒด์˜ epitaxy ๋ฐฉ๋ฒ•์ด ํ”ํžˆ ์‚ฌ์šฉ๋˜์–ด ์™”๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด, ๋‹ค๋ฅธ ๊ฒฉ์ž ์ƒ์ˆ˜๋ฅผ ๊ฐ€์ง„ ๋ฒŒํฌ ๊ตฌ์กฐ๋ฅผ metamorphic ์„ฑ์žฅ๋ฒ•์„ ์ด์šฉํ•˜์—ฌ ์„ฑ์žฅํ•˜๊ฑฐ๋‚˜, ๋˜๋Š” ์–‘์ž์šฐ๋ฌผ, ์–‘์ž์  ๊ทธ๋ฆฌ๊ณ  type-II ๊ธฐ๋ฐ˜์˜ ๊ตฌ์กฐ๊ฐ€ ์ ์šฉ๋˜์–ด์•ผ๋งŒ ํ–ˆ๋‹ค. Epitaxy ๋ฐฉ๋ฒ•์€ ๋งค์šฐ ๊ฐ„๋‹จํ•œ ๋ฐฉ๋ฒ•์ฒ˜๋Ÿผ ๋ณด์ด์ง€๋งŒ, ๊ธฐํŒ๊ณผ ์„ฑ์žฅํ•˜๋ ค๋Š” ๋ฌผ์งˆ๊ฐ„์˜ ๊ฒฉ์ž์ƒ์ˆ˜์˜ ์ฐจ์ด๋กœ ์ธํ•ด ์ œํ•œ๋˜๋Š” ๋ฌผ์งˆ ์„ ํƒ, ๋‚ด๋ถ€ ๊ฒฐํ•จ์— ์˜ํ•œ ์„ฑ๋Šฅ๊ฐ์†Œ ๊ทธ๋ฆฌ๊ณ  ์„ฑ์žฅ์˜ ๋ณต์žกํ•จ ๋“ฑ ์—ฌ๋Ÿฌ ๋ฌธ์ œ๊ฐ€ ์กด์žฌํ•œ๋‹ค. ๊ทธ๋ž˜์„œ, epitaxy ๋ฐฉ๋ฒ•์˜ ๋‹จ์ ๋“ค์„ ํšŒํ”ผํ•˜๊ธฐ ์œ„ํ•˜์—ฌ, ๋‹ค๋ฅธ ๊ธฐํŒ์—์„œ ์„ฑ์žฅ๋œ ์†Œ์ž์˜ ์ง‘์ ์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•  ์ˆ˜ ์žˆ๋Š”, ์ด์ข… ์ง‘์  ๋ฐฉ๋ฒ•์ด ๋Œ€์•ˆ์ด ๋˜์–ด์™”๋‹ค. ์ด๋ฅผ ์ด์šฉํ•˜๋ฉด, ๊ฐ„๋‹จํ•œ ๋ฒŒํฌ ๊ตฌ์กฐ์˜ ๊ด‘ ๊ฒ€์ถœ๊ธฐ๋ฅผ ๊ฒฐํ•ฉํ•  ์ˆ˜ ์žˆ๊ธฐ ๋•Œ๋ฌธ์— ๋งค์šฐ ์œ ๋งํ•œ ๋ฐฉ๋ฒ•์œผ๋กœ ์—ฌ๊ฒจ์ง€๊ณ  ์žˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜, ์ด์ข… ์ง‘์  ๋ฐฉ๋ฒ•์˜ ๋›ฐ์–ด๋‚œ ์žฅ์ ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ , ํ˜„์žฌ์˜ ๋‹ค์ค‘ํŒŒ์žฅ ๊ด‘ ๊ฒ€์ถœ๊ธฐ๋Š” ์ง‘์  ๋ฐฉ๋ฒ•์˜ ๋ฌธ์ œ๋กœ ์ˆ˜์ง ์ •๋ ฌ ์˜ค์ฐจ ๋ฐ ํ”ฝ์…€ ๋ฐ€๋„ ์ธก๋ฉด์—์„œ ํ•œ๊ณ„์ ์„ ๋ณด์—ฌ์ฃผ์—ˆ๋‹ค. ๋”ฐ๋ผ์„œ, ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ๊ณ ๋ฐ€๋„/ ๊ณ ์ •๋ ฌ๋œ ๋‹ค์ค‘ํŒŒ์žฅ ๊ด‘ ๊ฒ€์ถœ๊ธฐ ์ œ์ž‘์„ ์œ„ํ•œ 3-5์กฑ ๊ธฐ๋ฐ˜์˜ ํ™”ํ•ฉ๋ฌผ ๋ฐ˜๋„์ฒด์˜ ์ด์ข… ์ง‘์  ๋ฐฉ๋ฒ•์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๋ฅผ ์ง„ํ–‰ํ•˜์˜€๋‹ค. ๋จผ์ €, 3-5์กฑ GaAs ๊ธฐ๋ฐ˜์˜ ๋ฐ•๋ง‰์†Œ์ž๋ฅผ ๋‹ค๋ฅธ ๊ธฐํŒ๊ณผ ์ด์ข… ์ง‘์ ํ•˜๋Š” ์—ฐ๊ตฌ๋ฅผ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ๊ธฐ์กด์˜ wafer splitting ๊ณผ transfer printing ๋ฐฉ๋ฒ•๊ณผ ๋น„๊ตํ–ˆ์„ ๋•Œ ๋Œ€๋ฉด์  ์ „์‚ฌ, ์ €๋ ดํ•œ ๊ฐ€๊ฒฉ ๊ทธ๋ฆฌ๊ณ  ๊ณ ํ’ˆ์งˆ layer๋“ฑ ์žฅ์ ๋“ค์ด ์žˆ๋Š” ์›จ์ดํผ ์ ‘ํ•ฉ๊ณผ ์—ํ”ผํƒ์…œ ๋ฆฌํ”„ํŠธ ์˜คํ”„ (epitaxial lift off) ๋ฐฉ๋ฒ•์— ๋Œ€ํ•ด์„œ ์—ฐ๊ตฌ๋ฅผ ํ•˜์˜€๋‹ค. ๋‹จ์ผ ๊ธฐํŒ์ƒ์— ๋‹ค์ค‘ํŒŒ์žฅ ๊ด‘ ๊ฒ€์ถœ๊ธฐ๋ฅผ ์ œ์ž‘ํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š”, rigid-to-rigid ์ด์ข… ์ง‘์  ๋ฐฉ๋ฒ•์ด ๋ฐ˜๋“œ์‹œ ํ•„์š”ํ•˜๋‹ค. ๊ทธ๋Ÿฌ๋‚˜, strain ๊ณผ ์™ธ๋ถ€ ์žฅ์น˜๋ฅผ ์ด์šฉํ•˜์—ฌ ๊ธฐํŒ ๋ถ„๋ฆฌ๋ฅผ ๊ฐ€์†ํ™” ์‹œํ‚ฌ ์ˆ˜ ์žˆ๋Š” ์œ ์—ฐ๊ธฐํŒ ์ƒ์˜ ๋ฐ•๋ง‰์ „์‚ฌ์™€ ๋‹ฌ๋ฆฌ, ์Šต์‹ ์‹๊ฐ ์‹œ ์ƒ์„ฑ๋˜๋Š” ๋ถ€์‚ฐ๋ฌผ๋“ค๊ณผ ๊ฐ€์Šค ๊ธฐํฌ๋“ค ๋•Œ๋ฌธ์— ์—ํ”ผํƒ์…œ ๋ฆฌํ”„ํŠธ ์˜คํ”„ ๋ฐฉ๋ฒ•์„ ์ด์šฉํ•œ rigid-to-rigid ์ „์‚ฌ์— ๋Œ€ํ•ด์„œ๋Š” ๋งค์šฐ ์ ์€ ๊ฒฐ๊ณผ๋งŒ์ด ๋ณด๊ณ ๋˜์—ˆ๋‹ค. ์ด๋Ÿฐ ๋ฌธ์ œ๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด์„œ, pre-patterning ๊ณผ์ •๊ณผ ํ‘œ๋ฉด ์นœ์ˆ˜ํ™”๋ฅผ ํ†ตํ•œ ๊ณ ์† ์—ํ”ผํƒ์…œ ๋ฆฌํ”„ํŠธ ์˜คํ”„๋ฅผ ์ œ์•ˆํ•˜์˜€๋‹ค. ์ด pre-patterning ๊ณผ์ •์€ AlAs ํฌ์ƒ์ธต์˜ ์‹๊ฐ ์˜์—ญ์„ ๊ทน๋Œ€ํ™” ์‹œํ‚ฌ ์ˆ˜ ์žˆ์œผ๋ฉฐ, ๊ธฐํฌ๋ฅผ ๋น ๋ฅด๊ฒŒ ์ œ๊ฑฐํ•  ์ˆ˜ ์žˆ๋‹ค. ๊ทธ๋ฆฌ๊ณ , ์นœ์ˆ˜์„ฑ ์šฉ์•ก์ธ ์•„์„ธํ†ค์„ ๋ถˆ์‚ฐ๊ณผ ์„ž์–ด์ฃผ๋ฉด ์ ๋„์™€ ํ‘œ๋ฉด ์ ‘์ด‰ ๊ฐ์„ ์ค„์ผ ์ˆ˜ ์žˆ๋‹ค. ์ด๊ฒƒ์€ ์‹๊ฐ ์šฉ์•ก์˜ ํšจ๊ณผ์ ์ธ ์นจํˆฌ์™€ ๋ถ€์‚ฐ๋ฌผ์„ ์–ต์ œ์‹œํ‚ค๋Š” ๊ฒฐ๊ณผ๋ฅผ ๋ณด์˜€๋‹ค. ๊ฒฐ๊ณผ์ ์œผ๋กœ, 2 ์ธ์น˜ ํฌ๊ธฐ์˜GaAs ๊ธฐ๋ฐ˜ ๋ฐ•๋ง‰๋“ค์„ rigid ๊ธฐํŒ์ƒ์— 30๋ถ„ ์ด๋‚ด๋กœ ์ „์‚ฌ๊ฐ€ ๊ฐ€๋Šฅํ–ˆ์œผ๋ฉฐ ์ด๋Š” ๊ธฐ์กด์˜ ๋ณด๊ณ ๋“ค๊ณผ ๋น„๊ตํ–ˆ์„ ๋•Œ ๊ฐ€์žฅ ๋น ๋ฅธ ๊ฒฐ๊ณผ์ด๋‹ค. ๋˜ํ•œ ์ด ํ…œํ”Œ๋ฆฟ์„ ์ด์šฉํ•˜์—ฌ ๊ด‘/์ „์ž ์†Œ์ž๋ฅผ ์„ฑ๊ณต์ ์œผ๋กœ ์ œ์ž‘ ๋ฐ ๋™์ž‘์‹œ์ผฐ๋‹ค. ๋‘ ๋ฒˆ์งธ๋กœ, ๊ธฐ์กด์˜ InSb ๋ฌผ์งˆ์„ ์ด์šฉํ•œ ๋ฒŒํฌ ๊ตฌ์กฐ์˜ ๊ด‘ ๊ฒ€์ถœ๊ธฐ๊ฐ€ ๊ฐ€์ง„ ํŒŒ์žฅํ•œ๊ณ„ ๊ทธ๋ฆฌ๊ณ  ์ €์˜จ๋™์ž‘ ๋“ฑ์˜ ์ œ์•ฝ๋“ค์„ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•œ ์—ฐ๊ตฌ๋ฅผ ์ง„ํ–‰ํ•˜์˜€๋‹ค. ๋ฒŒํฌ ๊ตฌ์กฐ์˜ ํŒŒ์žฅ ํ•œ๊ณ„๋ฅผ ์›์ ์™ธ์„  ๋Œ€์—ญ๊นŒ์ง€ ๋Š˜์ด๊ธฐ ์œ„ํ•œ, 3-5์กฑ ๋ฌผ์งˆ ์ค‘ ์ด์ƒ์ ์ธ ๋ฌผ์งˆ์€ ์ธ๋“ ์•„์„ธ๋‚˜์ด๋“œ ์•ˆํ‹ฐ๋ชจ๋‚˜์ด๋“œ (indium arsenide antimonide) ์ด๋‹ค. ์™œ๋ƒํ•˜๋ฉด InAsxSb1-x๋Š” SWIR ๋ถ€ํ„ฐ LWIR ์˜ ํ•ด๋‹นํ•˜๋Š” ๋ฐด๋“œ ๊ฐญ์„ ๊ฐ€์ง€๊ณ  ์žˆ๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค. ์ด ๋ฌผ์งˆ ๊ธฐ๋ฐ˜์˜ ๊ตฌ์กฐ์™€ ๊ฐœ๋ฐœ๋œ ๊ณต์ •์„ ์‚ฌ์šฉํ•˜๋ฉด, ์šฐ๋ฆฌ๋Š” ๊ถ๊ทน์ ์œผ๋กœ ์ž์™ธ์„ ๋ถ€ํ„ฐ ์›์ ์™ธ์„ ๊นŒ์ง€์˜ ์˜์—ญ์„ ๋ฒŒํฌ ๊ตฌ์กฐ๋งŒ์„ ์‚ฌ์šฉํ•˜์—ฌ ๋‹ค์ค‘ํŒŒ์žฅ ๊ด‘ ๊ฒ€์ถœ๊ธฐ๋ฅผ ๊ตฌํ˜„ํ•  ์ˆ˜ ์žˆ๊ฒŒ ๋œ๋‹ค. ๋”ฐ๋ผ์„œ, ์ด ๋ฌผ์งˆ์˜ ๊ฐ€๋Šฅ์„ฑ์„ ๊ฒ€์ฆํ•˜๊ธฐ ์œ„ํ•ด์„œ, InAs0.81Sb0.19 ์˜ ํก์ˆ˜์ธต์„ ๊ฐ€์ง„ p-i-n ๊ตฌ์กฐ ๊ธฐ๋ฐ˜์˜ ๊ด‘ ๊ฒ€์ถœ๊ธฐ๋ฅผ GaAs ๊ธฐํŒ์ƒ์—์„œ ์„ฑ์žฅํ•˜์˜€๋‹ค. ๊ณ ์˜จ์—์„œ ๋™์ž‘ ํŠน์„ฑ์„ ํ–ฅ์ƒ์‹œํ‚ค๊ธฐ ์œ„ํ•˜์—ฌ, ์ตœ์ ์˜ InAlSb ๋ฐฐ๋ฆฌ์–ด๋ฅผ TCAD๋กœ ๋””์ž์ธํ•˜์˜€๋‹ค. ์ด๋Ÿฌํ•œ, InAsSb/InAlSb ์ด์ข… ์ ‘ํ•ฉ ๊ด‘ ๊ฒ€์ถœ๊ธฐ๋Š” ๋ถ„์ž์„  ์ฆ์ฐฉ ์žฅ๋น„๋ฅผ ์ด์šฉํ•˜์—ฌ ์„ฑ์žฅ๋˜์—ˆ๋‹ค. ๊ทธ ๊ฒฐ๊ณผ๋กœ, ์šฐ๋ฆฌ๋Š” ๋น„์Šทํ•œ Sb ์กฐ์„ฑ์„ ๊ฐ€์ง„ InAsSb ๊ธฐ๋ฐ˜์˜ ๊ด‘ ๊ฒ€์ถœ๊ธฐ๋“ค ์ค‘์—์„œ, ์ฒ˜์Œ์œผ๋กœ ์ค‘์ ์™ธ์„  ๋Œ€์—ญ์˜ ์ด์ข… ์ ‘ํ•ฉ ๊ตฌ์กฐ์˜ ๊ด‘ ๊ฒ€์ถœ๊ธฐ๋ฅผ ์ƒ์˜จ ๋™์ž‘ ํ•˜๋Š” ๊ฒƒ์„ ์‹œ์—ฐํ•˜์˜€๋‹ค. ๊ฒŒ๋‹ค๊ฐ€, ๊ทธ๊ฒƒ์€ ์ƒ์šฉํ™” ๋œ ๊ด‘ ๊ฒ€์ถœ๊ธฐ๋ณด๋‹ค ๋†’์€ ๊ด‘ ์‘๋‹ต ํŠน์„ฑ(15 mA/W)์„ ๋ณด์—ฌ์ฃผ์—ˆ๋‹ค. ์ด ์ƒ์˜จ์—์„œ ๋™์ž‘ํ•˜๋Š” ์ค‘์ ์™ธ์„  ๊ด‘ ๊ฒ€์ถœ๊ธฐ๋Š” InSb ๊ด‘ ๊ฒ€์ถœ๊ธฐ์— ์‚ฌ์šฉ๋˜๋Š” Dewar ๋ฅผ ์ œ๊ฑฐํ•จ์œผ๋กœ์จ, ์ตœ์ข… ๊ฒ€์ถœ๊ธฐ ์‹œ์Šคํ…œ์˜ ๋ถ€ํ”ผ๋ฅผ ๊ฐ์†Œ ์‹œํ‚ฌ ์ˆ˜ ์žˆ๋‹ค. ์ด ์‹คํ—˜์œผ๋กœ๋ถ€ํ„ฐ, ๋ฒŒํฌ ๊ตฌ์กฐ๋กœ ์›์ ์™ธ์„  ๋Œ€์—ญ์„ ๊ฒ€์ถœํ•˜๊ธฐ ์œ„ํ•œ InAsSb ๋ฌผ์งˆ์˜ ํฐ ์ž ์žฌ์„ฑ์ด ์žˆ๋‹ค๋Š” ๊ฒƒ์„ ์˜๋ฏธํ•œ๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ, ๋ฒŒํฌ ๊ตฌ์กฐ์˜ ์ง‘์ ์„ ํ†ตํ•œ ๋‹ค์ค‘ํŒŒ์žฅ ๊ด‘ ๊ฒ€์ถœ๊ธฐ์˜ ์‹คํ˜„์ด ๊ฐ€๋Šฅํ•œ์ง€ ํ™•์ธํ•˜๊ธฐ ์œ„ํ•ด์„œ ๋ชจ๋†€๋ฆฌ์‹(monolithic) ์ง‘์ ์— ๊ด€ํ•œ ์—ฐ๊ตฌ๋ฅผ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ํ™•๋ณด๋œ ์ƒ์˜จ ๋™์ž‘์ด ๊ฐ€๋Šฅํ•œ ๊ฐ€์‹œ๊ด‘์„ ๋ถ€ํ„ฐ MWIR ๊ฒ€์ถœ ํŒŒ์žฅ์„ ๊ฐ€์ง„ ๊ด‘ ๊ฒ€์ถœ๊ธฐ๋“ค ์ค‘์—์„œ, ์ตœ์ ์˜ ์ œ์ž‘ ์ˆœ์„œ๋ฅผ ํ™•๋ฆฝํ•˜๊ธฐ ์œ„ํ•ด์„œ ๋ฌผ์งˆ์— ๊ด€ํ•œ ์„ฑ์ˆ™๋„๊ฐ€ ๋†’์€ ๊ฐ€์‹œ๊ด‘์„  GaAs ๊ทธ๋ฆฌ๊ณ  ๊ทผ์ ์™ธ์„  InGaAs ๊ด‘ ๊ฒ€์ถœ๊ธฐ๋ฅผ ์‚ฌ์šฉํ•˜์˜€๋‹ค. ๊ฐ€์‹œ๊ด‘/๊ทผ์ ์™ธ์„  ๋Œ€์—ญ์˜ ๋‹ค์ค‘ํŒŒ์žฅ ๊ด‘ ๊ฒ€์ถœ๊ธฐ๋ฅผ ํ˜•์„ฑํ•˜๊ธฐ ์œ„ํ•ด์„œ, GaAs ๊ด‘ ๊ฒ€์ถœ๊ธฐ๋ฅผ InGaAs ๊ด‘ ๊ฒ€์ถœ๊ธฐ ์ƒ์œผ๋กœ ๊ฐœ๋ฐœ๋œ ๊ณ ์† ์—ํ”ผํƒ์…œ ๋ฆฌํ”„ํŠธ ์˜คํ”„ ๊ธฐ๋ฒ•์„ ์‚ฌ์šฉํ•˜์—ฌ ์ „์‚ฌํ•˜์˜€๋‹ค. GaAs ๊ด‘ ๊ฒ€์ถœ๊ธฐ์™€ InGaAs ๊ด‘ ๊ฒ€์ถœ๊ธฐ๋Š” off-axis ์—†์ด ์ˆ˜์ง์œผ๋กœ ์ž˜ ์ •๋ ฌ๋˜์—ˆ์Œ์„ x-ray ๋ถ„๊ด‘๋ฒ•์„ ์ด์šฉํ•˜์—ฌ ํ™•์ธํ•˜์˜€๋‹ค. ๋˜ํ•œ, ๊ฐ๊ฐ์˜ ๊ด‘ ๊ฒ€์ถœ๊ธฐ์˜ ๊ธฐ์ค€ ์†Œ์ž๋“ค๊ณผ ๋น„๊ตํ–ˆ์„ ๋•Œ ๋น„์Šทํ•œ ์•” ์ „๋ฅ˜๊ฐ€ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ, ๋ ˆ์ด์ € ์ž…์‚ฌ๋ฅผ ํ†ตํ•ด, ๋‘ ๊ฐœ์˜ ๊ด‘ ๊ฒ€์ถœ๊ธฐ ๋Œ€ํ•œ ๊ด‘ ๋ฐ˜์‘์€ ๋ฌผ์งˆ ํŠน์„ฑ๋“ค์— ๋”ฐ๋ผ ๊ฐ€์‹œ๊ด‘๊ณผ ๊ทผ์ ์™ธ์„ ์—์„œ ๊ฐ๊ฐ ๋ช…ํ™•ํ•˜๊ฒŒ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ์ด๋Ÿฌํ•œ ๊ฒฐ๊ณผ๋“ค์€ ๊ณ ์† ์—ํ”ผํƒ์…œ ๋ฆฌํ”„ํŠธ ์˜คํ”„ ๊ธฐ๋ฒ•์ด ๋†’์€ ํ”ฝ์…€ ๋ฐ€๋„ ๋ฐ ๊ฑฐ์˜ ์™„๋ฒฝํ•œ ์ˆ˜์ง ์ •๋ ฌ๋„๋ฅผ ๊ฐ–๋Š” ํ•œ ๊ธฐํŒ์ƒ์˜ ๋ฒŒํฌ ๊ธฐ๋ฐ˜์˜ ๋‹ค์ค‘ํŒŒ์žฅ ๊ด‘ ๊ฒ€์ถœ๊ธฐ๋ฅผ ์ง‘์ ํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ๊ฒƒ์„ ์˜๋ฏธํ•œ๋‹ค. ๋ฏธ๋ž˜์˜ ๋ชฉํ‘œํ•˜๋Š” ์‘์šฉ์ฒ˜์— ๋”ฐ๋ผ, ์›ํ•˜๋Š” ํŒŒ์žฅ๋“ค์„ ๊ฐ–๋Š” ๊ด‘ ๊ฒ€์ถœ๊ธฐ๋ฅผ ๋ฒŒํฌ ๊ตฌ์กฐ๋กœ ๊ฐ„๋‹จํ•˜๊ฒŒ ์„ฑ์žฅํ•  ์ˆ˜ ์žˆ๊ณ , ๋‹ค์ค‘ํŒŒ์žฅ ์ด๋ฏธ์ง• ์‹œ์Šคํ…œ์„ ์ œ์ž‘ ํ•  ์ˆ˜ ์žˆ๋‹ค.List of Figures i Chapter.1 Introduction 1 1.1 Photodetectors based on III-V compound semiconductors 1 1.2 Imaging applications 4 1.2.1. Single color imaing 4 1.2.2. Multicolor imaing 4 1.2.3. Development trend of photodetectors 5 1.3 Approches for forming multicolor photodectors 9 1.3.1. Epitaxy 9 1.3.2. Heterogeneous integration 17 1.3.3. Summary of each method 21 1.4 Overview of heterogeneous integration technology 23 1.4.1. Introduction 23 1.4.2. Direct bonding 24 1.4.3. Cold-weld bonding 26 1.4.4. Eutectic bonding 26 1.4.5. Adhesive bonding 28 1.4.7. Wafer splitting 31 1.4.8. Epitaxial lift off (ELO) 33 1.4.9. Benchmark of differenct heterogeneous intergration methods 35 1.5 Thesis overview 37 1.6 Bibliography 40 Chapter. 2 Method for heterogeneous integration of III-V compound semiconductors on other substrates 45 2.1 Introduction 45 2.1.1 The origin of low throughput in conventional ELO 46 2.1.2 Previous works for ehancement of ELO throughput 48 2.1.3 Approach: high-throughput ELO process 53 2.1.4 Experimental procedure 55 2.2 Results and discussion 57 2.3 Summary 65 2.4 Biblography 66 Chapter. 3 Verification of thin film devices by using a high throughput heterogeneous integration method 70 3.1 Introduction 70 3.2 Growth of device structures and heterogeneous integration 72 3.2.1. Device structures 72 3.2.2. Wafer bonding and ELO 74 3.3 Y2O3 bonded HEMTs on Si substrate 75 3.3.1 Fabrication process 75 3.3.2. Material characterization of HEMTs on Si 76 3.3.3. Electrical characterization of HEMTs on Si 80 3.3.4. Investigation of wafer reusability by using HEMT structure 83 3.4 Pt/Au bonded optoelectonic devices 86 3.4.1. Fabrication process of solar cells and HPTs on Si 86 3.4.2. Evaluation of Pt/Au metal bonding 88 3.4.3. Characterization of solar cells and HPTs 91 3.5 Estimation of production cost via recycling III-V wafers 95 3.6 Summary 101 3.7 Bibliography 102 Chapter. 4 Design and characterization of III-V based photodtectors 106 4.1 Introduction 106 4.1.1. The potential of Induim arsenide antimonide (InAsSb) 106 4.1.2. Challenges of InAsSb p-i-n PDs for compact detector systems 110 4.2 Barrier layer design and material characterization for growing HJPDs 113 4.2.1. Simulation of an optimum barrier layer for InAs0.8Sb0.2 113 4.2.2. Growth of a high quality InAsSb layer with an AlGaSb buffer layer grown on GaAs substrates 115 4.2.3. Ohmic contact formation with metal species 120 4.2.4. Growth and fabrication of InAsSb based HJPDs 126 4.3 Analysis of electrical and optical characteristics for fabricated PDs 129 4.4 Summary 138 4.5 Bibliography 139 Chapter. 5 Monolithic integration of visible/near-infrared photodetectors 145 5.1 Introduction 145 5.2 Fabrication process and material characterization of multicolor PD 148 5.3 Analysis of the electrical and optical characteristics of the fabricated multicolor PDs 154 5.4 Summary 163 5.5 Bibliography 164 Chapter. 6 Conclusions 169 ๊ตญ ๋ฌธ ์ดˆ ๋ก 172Docto

    The development of sub-25 nm III-V High Electron Mobility Transistors

    Get PDF
    High Electron Mobility Transistors (HEMTs) are crucially important devices in microwave circuit applications. As the technology has matured, new applications have arisen, particularly at millimetre-wave and sub-millimetre wave frequencies. There now exists great demand for low-visibility, security and medical imaging in addition to telecommunications applications operating at frequencies well above 100 GHz. These new applications have driven demand for high frequency, low noise device operation; key areas in which HEMTs excel. As a consequence, there is growing incentive to explore the ultimate performance available from such devices. As with all FETs, the key to HEMT performance optimisation is the reduction of gate length, whilst optimally scaling the rest of the device and minimising parasitic extrinsic influences on device performance. Although HEMTs have been under development for many years, key performance metrics have latterly slowed in their evolution, largely due to the difficulty of fabricating devices at increasingly nanometric gate lengths and maintaining satisfactory scaling and device performance. At Glasgow, the world-leading 50 nm HEMT process developed in 2003 had not since been improved in the intervening five years. This work describes the fabrication of sub-25 nm HEMTs in a robust and repeatable manner by the use of advanced processing techniques: in particular, electron beam lithography and reactive ion etching. This thesis describes firstly the development of robust gate lithography for sub-25 nm patterning, and its incorporation into a complete device process flow. Secondly, processes and techniques for the optimisation of the complete device are described. This work has led to the successful fabrication of functional 22 nm HEMTs and the development of 10 nm scale gate pattern transfer: simultaneously some of the shortest gate length devices reported and amongst the smallest scale structures ever lithographically defined on III-V substrates. The first successful fabrication of implant-isolated planar high-indium HEMTs is also reported amongst other novel secondary processes

    Development of advanced technologies for the fabrication of III-V high electron mobility transistors

    Get PDF
    Over the past 5 years there has been an increase in the number of applications that require devices that operate in the millimetre range (30-300GHz). This demand has driven research into " devices that will operate at frequencies above 100GHz. This performance has been achieved using two main technologies, the Heterojunction Bipolar Transistor (HBT) and the High Electron Mobility Transistor (HEMT). At present it is a HEMT device that holds the record for the highest operating frequency of any transistor. It is this technology that this project concentrates on. In order to fabricate devices that operate at these frequencies two methods are commonly employed. The first is to vary the material of the device, in particular, increasing the indium content of the channel. The second method is to reduce the physical dimensions of the transistors, including reducing the gate length of the device therefore reducing transit time and gate capacitance. Reducing the separation of the source-drain ohmic contacts or employing a self-aligned ohmic strategy reduces the associated parasitic resistances. This project will concentrate on the scaling of the gate length in addition to the reduction of parasitic resistances with the use of self-aligned ohmic contacts.This work includes the realisation of the first self-aligned 120nm T -Gate. GaAs pHEMT fabricated at the University of Glasgow. These devices required the development of two key technologies, the non-annealed ohmic contact and the succinic acid based selective wet etch. The self-aligned devices showed good RF performance with a ft of 150 GHz and a fmax of 180 GHz which compares favourable with results o~ 120nm GaAs pHEMTs previously fabricated at Glasgow. The investigation of gate length scaling to device performance included the development of two lithographic process capable of producing HEMT with a gate length of 50nm and 30nm respectively in addition to a method ~f sample preparation that allows these devices to be analysed using TEM techniques. This work has lead to the realisation of SOnm T -gate metamorphic HEMTs using a PMMAIcopolymer resist stack, these devices displayed an excellent yield, with over 95% of devices working. The uniformity of the gate process was also high with a threshold voltage of - 0.44SV with a standard deviation of O.OOSV. The devices demonstrated an .it of 330GHz and a fmax of 260GHz making these devices some of the fastest transistors that have ever been fabricated on a GaAs substrate. The second lithography process was developed to realise T -gates with a gate length of less than SOnm. This processed used a two stage "bi-lithography" process to minimise the effect of forward s7attering through the resist. The gate footprint was transferred into a Si02 gate by a dry etch process. This lithography process was integrated into a full process flow for lattice matched InP HEMTs Using this process, HEMTs were fabricated with a T-gate of 2Snm. This is the smallest T -gate device that has been fabricated at the University of Glasgow and is comparable with the smallest HEMT devices in the world

    A review of technologies and design techniques of millimeter-wave power amplifiers

    Get PDF
    his article reviews the state-of-the-art millimeter-wave (mm-wave) power amplifiers (PAs), focusing on broadband design techniques. An overview of the main solid-state technologies is provided, including Si, gallium arsenide (GaAs), GaN, and other III-V materials, and both field-effect and bipolar transistors. The most popular broadband design techniques are introduced, before critically comparing through the most relevant design examples found in the scientific literature. Given the wide breadth of applications that are foreseen to exploit the mm-wave spectrum, this contribution will represent a valuable guide for designers who need a single reference before adventuring in the challenging task of the mm-wave PA design

    An Overview of Solid-State Integrated Circuit Amplifiers in the Submillimeter-Wave and THz Regime

    Full text link
    • โ€ฆ
    corecore