1,739 research outputs found

    Phased mission analysis using the cause–consequence diagram method

    Get PDF
    Most reliability analysis techniques and tools assume that a system used for a mission consists of a single phase. However, multiple phases are natural in many missions. A system that can be modelled as a mission consisting of a sequence of phases is called a phased mission system. In this case, for successful completion of each phase the system may have to meet different requirements. System failure during any phase will result in mission failure. Fault tree analysis, binary decision diagrams and Markov techniques have been used to model phased missions. The cause–consequence diagram method is an alternative technique capable of modelling all system outcomes (success and failure) in one logic diagram. [Continues.

    The art of fault-tolerant system reliability modeling

    Get PDF
    A step-by-step tutorial of the methods and tools used for the reliability analysis of fault-tolerant systems is presented. Emphasis is on the representation of architectural features in mathematical models. Details of the mathematical solution of complex reliability models are not presented. Instead the use of several recently developed computer programs--SURE, ASSIST, STEM, PAWS--which automate the generation and solution of these models is described

    Phased-Mission Reliability and Importance Measure Analysis for Linear and Circular UAV Swarms

    Get PDF
    The phased-mission reliability of unmanned aerial vehicle (UAV) swarm refers to its capability to successfully complete the missions of each phase under specified conditions for a specified period. In order to study the reliability of phased-mission in UAV swarm, this paper firstly studies the reliability of a single UAV under fault coverage. Then, considering the mission characteristics of UAV swarm, the consecutive k-out-of-n system is studied to model and predict the reliability of UAV swarm phase mission. Some importance measures are introduced to analyze the influence of UAV in different positions on the reliability of the whole system. Finally, numerical examples of linear and circular UAV swarms are given to demonstrate and verify the correctness of the model. The reliability modeling established in this paper can predict the phased-mission reliability of UAV swarm scientifically

    HiRel: Hybrid Automated Reliability Predictor (HARP) integrated reliability tool system, (version 7.0). Volume 1: HARP introduction and user's guide

    Get PDF
    The Hybrid Automated Reliability Predictor (HARP) integrated Reliability (HiRel) tool system for reliability/availability prediction offers a toolbox of integrated reliability/availability programs that can be used to customize the user's application in a workstation or nonworkstation environment. HiRel consists of interactive graphical input/output programs and four reliability/availability modeling engines that provide analytical and simulative solutions to a wide host of reliable fault-tolerant system architectures and is also applicable to electronic systems in general. The tool system was designed to be compatible with most computing platforms and operating systems, and some programs have been beta tested, within the aerospace community for over 8 years. Volume 1 provides an introduction to the HARP program. Comprehensive information on HARP mathematical models can be found in the references

    Systems reliability for phased missions

    Get PDF
    The concept of a phased mission has been introduced as a sequential set of objectives that operate over different time intervals. During each phase of the mission, the system may alter such that the logic model, system configuration, or system failure characteristics may change to accomplish a required objective. A new fault tree method has been proposed to enable the probability of failure in each phase to be determined in addition to the whole mission unreliability. Phase changes are assumed to be instantaneous, and component failure rates are assumed to be constant through the mission. For any phase, the method combines the causes of success of previous phases with the causes of failure for the phase being considered to allow both qualitative and quantitative analysis of both phase and mission failure. A new set of Boolean laws is introduced to combine component success and failure events through multiple phases so that the expression for each phase failure can be reduced into minimal form. [Continues.

    Framework for a space shuttle main engine health monitoring system

    Get PDF
    A framework developed for a health management system (HMS) which is directed at improving the safety of operation of the Space Shuttle Main Engine (SSME) is summarized. An emphasis was placed on near term technology through requirements to use existing SSME instrumentation and to demonstrate the HMS during SSME ground tests within five years. The HMS framework was developed through an analysis of SSME failure modes, fault detection algorithms, sensor technologies, and hardware architectures. A key feature of the HMS framework design is that a clear path from the ground test system to a flight HMS was maintained. Fault detection techniques based on time series, nonlinear regression, and clustering algorithms were developed and demonstrated on data from SSME ground test failures. The fault detection algorithms exhibited 100 percent detection of faults, had an extremely low false alarm rate, and were robust to sensor loss. These algorithms were incorporated into a hierarchical decision making strategy for overall assessment of SSME health. A preliminary design for a hardware architecture capable of supporting real time operation of the HMS functions was developed. Utilizing modular, commercial off-the-shelf components produced a reliable low cost design with the flexibility to incorporate advances in algorithm and sensor technology as they become available

    Advanced flight control system study

    Get PDF
    The architecture, requirements, and system elements of an ultrareliable, advanced flight control system are described. The basic criteria are functional reliability of 10 to the minus 10 power/hour of flight and only 6 month scheduled maintenance. A distributed system architecture is described, including a multiplexed communication system, reliable bus controller, the use of skewed sensor arrays, and actuator interfaces. Test bed and flight evaluation program are proposed

    HiRel: Hybrid Automated Reliability Predictor (HARP) integrated reliability tool system, (version 7.0). Volume 2: HARP tutorial

    Get PDF
    The Hybrid Automated Reliability Predictor (HARP) integrated Reliability (HiRel) tool system for reliability/availability prediction offers a toolbox of integrated reliability/availability programs that can be used to customize the user's application in a workstation or nonworkstation environment. The Hybrid Automated Reliability Predictor (HARP) tutorial provides insight into HARP modeling techniques and the interactive textual prompting input language via a step-by-step explanation and demonstration of HARP's fault occurrence/repair model and the fault/error handling models. Example applications are worked in their entirety and the HARP tabular output data are presented for each. Simple models are presented at first with each succeeding example demonstrating greater modeling power and complexity. This document is not intended to present the theoretical and mathematical basis for HARP
    • …
    corecore