34 research outputs found

    Phased mission analysis using the cause–consequence diagram method

    Get PDF
    Most reliability analysis techniques and tools assume that a system used for a mission consists of a single phase. However, multiple phases are natural in many missions. A system that can be modelled as a mission consisting of a sequence of phases is called a phased mission system. In this case, for successful completion of each phase the system may have to meet different requirements. System failure during any phase will result in mission failure. Fault tree analysis, binary decision diagrams and Markov techniques have been used to model phased missions. The cause–consequence diagram method is an alternative technique capable of modelling all system outcomes (success and failure) in one logic diagram. [Continues.

    HiRel: Hybrid Automated Reliability Predictor (HARP) integrated reliability tool system, (version 7.0). Volume 1: HARP introduction and user's guide

    Get PDF
    The Hybrid Automated Reliability Predictor (HARP) integrated Reliability (HiRel) tool system for reliability/availability prediction offers a toolbox of integrated reliability/availability programs that can be used to customize the user's application in a workstation or nonworkstation environment. HiRel consists of interactive graphical input/output programs and four reliability/availability modeling engines that provide analytical and simulative solutions to a wide host of reliable fault-tolerant system architectures and is also applicable to electronic systems in general. The tool system was designed to be compatible with most computing platforms and operating systems, and some programs have been beta tested, within the aerospace community for over 8 years. Volume 1 provides an introduction to the HARP program. Comprehensive information on HARP mathematical models can be found in the references

    A Data-Driven Reliability Estimation Approach for Phased-Mission Systems

    Get PDF
    We attempt to address the issues associated with reliability estimation for phased-mission systems (PMS) and present a novel data-driven approach to achieve reliability estimation for PMS using the condition monitoring information and degradation data of such system under dynamic operating scenario. In this sense, this paper differs from the existing methods only considering the static scenario without using the real-time information, which aims to estimate the reliability for a population but not for an individual. In the presented approach, to establish a linkage between the historical data and real-time information of the individual PMS, we adopt a stochastic filtering model to model the phase duration and obtain the updated estimation of the mission time by Bayesian law at each phase. At the meanwhile, the lifetime of PMS is estimated from degradation data, which are modeled by an adaptive Brownian motion. As such, the mission reliability can be real time obtained through the estimated distribution of the mission time in conjunction with the estimated lifetime distribution. We demonstrate the usefulness of the developed approach via a numerical example

    A novel discrete bat algorithm for heterogeneous redundancy allocation of multi-state systems subject to probabilistic common-cause failure

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.This paper focuses on a heterogeneous redundancy allocation problem (RAP) for multi-state series-parallel systems subject to probabilistic common-cause failure and proposes a novel discrete bat algorithm to solve it. Although abundant research studies have been published for solving multi-state RAPs, few of them have studied probabilistic common cause failure, which motivates this paper. Due to the insufficient data of components, an interval-valued universal generating function is utilized to evaluate the availability of components and the whole system. The challenge of solving this kind of RAPs lies in not only the reliability estimation, but also the solution method. This paper presents a novel discrete bat algorithm (BA) for effectively dealing with the proposed RAP and alleviating the premature convergence of BA. Two main features of the adaptation are Hamming distance-based bat movement (HDBM) and Q learning-based local search (QLLS). HDBM transfers the Hamming distance between the current bat and the best bat in the swarm to the movement rate. Then, QLLS utilizes Q-learning to adjust the local search strategies dynamically during the iterations. The computational results from extensive experiments demonstrate that the proposed algorithm is powerful, which is more efficient than other state-of-the-arts on this sort of problems

    Reliability and Cost Impacts for Attritable Systems

    Get PDF
    Attritable systems trade system attributes like reliability and reparability to achieve lower acquisition cost and decrease cost risk. Ultimately, it is hoped that by trading these attributes the amount of systems able to be acquired will be increased. However, the effect of trading these attributes on system-level reliability and cost risk is difficult to express complicated reparable systems like an air vehicle. Failure-time and cost data from a baseline limited-life air vehicle is analyzed for this reliability and reparability trade study. The appropriateness of various reliability and cost estimation techniques are examined for these data. This research employs the cumulative incidence function as an input to discrete time non-homogeneous Markov chain models to overcome the hurdles of representing the failure-time data of a reparable system with competing failure modes that vary with time. This research quantifies the probability of system survival to a given sortie, S(n), average unit flyaway cost (AUFC), and cost risk metrics to convey the value of reliability and reparability trades. Investigation of the benefit of trading system reparability shows a marked increase in cost risk. Yet, trades in subsystem reliability calculate the required decrease in subsystem cost required to make such a trade advantageous. This research results in a trade-space analysis tool that can be used to guide the development of future attritable air vehicles

    Enhancing the performance of automated guided vehicles through reliability, operation and maintenance assessment

    Get PDF
    Automated guided vehicles (AGVs), a type of unmanned moving robots that move along fixed routes or are directed by laser navigation systems, are increasingly used in modern society to improve efficiency and lower the cost of production. A fleet of AGVs operate together to form a fully automatic transport system, which is known as an AGV system. To date, their added value in efficiency improvement and cost reduction has been sufficiently explored via conducting in-depth research on route optimisation, system layout configuration, and traffic control. However, their safe application has not received sufficient attention although the failure of AGVs may significantly impact the operation and efficiency of the entire system. This issue becomes more markable today particularly in the light of the fact that the size of AGV systems is becoming much larger and their operating environment is becoming more complex than ever before. This motivates the research into AGV reliability, availability and maintenance issues in this thesis, which aims to answer the following four fundamental questions: (1) How could AGVs fail? (2) How is the reliability of individual AGVs in the system assessed? (3) How does a failed AGV affect the operation of the other AGVs and the performance of the whole system? (4) How can an optimal maintenance strategy for AGV systems be achieved? In order to answer these questions, the method for identifying the critical subsystems and actions of AGVs is studied first in this thesis. Then based on the research results, mathematical models are developed in Python to simulate AGV systems and assess their performance in different scenarios. In the research of this thesis, Failure Mode, Effects and Criticality Analysis (FMECA) was adopted first to analyse the failure modes and effects of individual AGV subsystems. The interactions of these subsystems were studied via performing Fault Tree Analysis (FTA). Then, a mathematical model was developed to simulate the operation of a single AGV with the aid of Petri Nets (PNs). Since most existing AGV systems in modern industries and warehouses consist of multiple AGVs that operate synchronously to perform specific tasks, it is necessary to investigate the interactions between different AGVs in the same system. To facilitate the research of multi-AGV systems, the model of a three-AGV system with unidirectional paths was considered. In the model, an advanced concept PN, namely Coloured Petri Net (CPN), was creatively used to describe the movements of the AGVs. Attributing to the application of CPN, not only the movements of the AGVs but also the various operation and maintenance activities of the AGV systems (for example, item delivery, corrective maintenance, periodic maintenance, etc.) can be readily simulated. Such a unique technique provides us with an effective tool to investigate larger-scale AGV systems. To investigate the reliability, efficiency and maintenance of dynamic AGV systems which consist of multiple single-load and multi-load AGVs traveling along different bidirectional routes in different missions, an AGV system consisting of 9 stations was simulated using the CPN methods. Moreover, the automatic recycling of failed AGVs is studied as well in order to further reduce human participation in the operation of AGV systems. Finally, the simulation results were used to optimise the design, operation and maintenance of multi-AGV systems with the consideration of the throughputs and corresponding costs of them.The research reported in this thesis contributes to the design, reliability, operation, and maintenance of large-scale AGV systems in the modern and rapidly changing world.</div

    Use of the space shuttle to avoid spacecraft anomalies

    Get PDF
    An existing data base covering 304 spacecraft of the U.S. space program was analyzed to determine the effect on individual spacecraft failures and other anomalies that the space shuttle might have had if it had been operational throughout the period covered by the data. By combining the results of this analysis, information on the prelaunch activities of selected spacecraft programs, and shuttle capabilities data, the potential impact of the space shuttle on future space programs was derived. The shuttle was found to be highly effective in the prevention or correction of spacecraft anomalies, with 887 of 1,230 anomalies analyzed being favorably impacted by full utilization of shuttle capabilities. The shuttle was also determined to have a far-reaching and favorable influence on the design, development, and test phases of future space programs. This is documented in 37 individual statements of impact

    Space transportation booster engine configuration study. Addendum: Design definition document

    Get PDF
    Gas generator engine characteristics and results of engine configuration refinements are discussed. Updated component mechanical design, performance, and manufacturing information is provided. The results are also provided of ocean recovery studies and various engine integration tasks. The details are provided of the maintenance plan for the Space Transportation Booster Engine
    corecore