714 research outputs found

    A Case Study for Business Integration as a Service

    No full text
    This paper presents Business Integration as a Service (BIaaS) to allow two services to work together in the Cloud to achieve a streamline process. We illustrate this integration using two services; Return on Investment (ROI) Measurement as a Service (RMaaS) and Risk Analysis as a Service (RAaaS) in the case study at the University of Southampton. The case study demonstrates the cost-savings and the risk analysis achieved, so two services can work as a single service. Advanced techniques are used to demonstrate statistical services and 3D Visualisation services under the remit of RMaaS and Monte Carlo Simulation as a Service behind the design of RAaaS. Computational results are presented with their implications discussed. Different types of risks associated with Cloud adoption can be calculated easily, rapidly and accurately with the use of BIaaS. This case study confirms the benefits of BIaaS adoption, including cost reduction and improvements in efficiency and risk analysis. Implementation of BIaaS in other organisations is also discussed. Important data arising from the integration of RMaaS and RAaaS are useful for management and stakeholders of University of Southampton

    Fail Over Strategy for Fault Tolerance in Cloud Computing Environment

    Get PDF
    YesCloud fault tolerance is an important issue in cloud computing platforms and applications. In the event of an unexpected system failure or malfunction, a robust fault-tolerant design may allow the cloud to continue functioning correctly possibly at a reduced level instead of failing completely. To ensure high availability of critical cloud services, the application execution and hardware performance, various fault tolerant techniques exist for building self-autonomous cloud systems. In comparison to current approaches, this paper proposes a more robust and reliable architecture using optimal checkpointing strategy to ensure high system availability and reduced system task service finish time. Using pass rates and virtualised mechanisms, the proposed Smart Failover Strategy (SFS) scheme uses components such as Cloud fault manager, Cloud controller, Cloud load balancer and a selection mechanism, providing fault tolerance via redundancy, optimized selection and checkpointing. In our approach, the Cloud fault manager repairs faults generated before the task time deadline is reached, blocking unrecoverable faulty nodes as well as their virtual nodes. This scheme is also able to remove temporary software faults from recoverable faulty nodes, thereby making them available for future request. We argue that the proposed SFS algorithm makes the system highly fault tolerant by considering forward and backward recovery using diverse software tools. Compared to existing approaches, preliminary experiment of the SFS algorithm indicate an increase in pass rates and a consequent decrease in failure rates, showing an overall good performance in task allocations. We present these results using experimental validation tools with comparison to other techniques, laying a foundation for a fully fault tolerant IaaS Cloud environment

    Dynamic service chain composition in virtualised environment

    Get PDF
    Network Function Virtualisation (NFV) has contributed to improving the flexibility of network service provisioning and reducing the time to market of new services. NFV leverages the virtualisation technology to decouple the software implementation of network appliances from the physical devices on which they run. However, with the emergence of this paradigm, providing data centre applications with an adequate network performance becomes challenging. For instance, virtualised environments cause network congestion, decrease the throughput and hurt the end user experience. Moreover, applications usually communicate through multiple sequences of virtual network functions (VNFs), aka service chains, for policy enforcement and performance and security enhancement, which increases the management complexity at to the network level. To address this problematic situation, existing studies have proposed high-level approaches of VNFs chaining and placement that improve service chain performance. They consider the VNFs as homogenous entities regardless of their specific characteristics. They have overlooked their distinct behaviour toward the traffic load and how their underpinning implementation can intervene in defining resource usage. Our research aims at filling this gap by finding out particular patterns on production and widely used VNFs. And proposing a categorisation that helps in reducing network latency at the chains. Based on experimental evaluation, we have classified firewalls, NAT, IDS/IPS, Flow monitors into I/O- and CPU-bound functions. The former category is mainly sensitive to the throughput, in packets per second, while the performance of the latter is primarily affected by the network bandwidth, in bits per second. By doing so, we correlate the VNF category with the traversing traffic characteristics and this will dictate how the service chains would be composed. We propose a heuristic called Natif, for a VNF-Aware VNF insTantIation and traFfic distribution scheme, to reconcile the discrepancy in VNF requirements based on the category they belong to and to eventually reduce network latency. We have deployed Natif in an OpenStack-based environment and have compared it to a network-aware VNF composition approach. Our results show a decrease in latency by around 188% on average without sacrificing the throughput

    A proactive fault tolerance framework for high performance computing (HPC) systems in the cloud

    Get PDF
    High Performance Computing (HPC) systems have been widely used by scientists and researchers in both industry and university laboratories to solve advanced computation problems. Most advanced computation problems are either data-intensive or computation-intensive. They may take hours, days or even weeks to complete execution. For example, some of the traditional HPC systems computations run on 100,000 processors for weeks. Consequently traditional HPC systems often require huge capital investments. As a result, scientists and researchers sometimes have to wait in long queues to access shared, expensive HPC systems. Cloud computing, on the other hand, offers new computing paradigms, capacity, and flexible solutions for both business and HPC applications. Some of the computation-intensive applications that are usually executed in traditional HPC systems can now be executed in the cloud. Cloud computing price model eliminates huge capital investments. However, even for cloud-based HPC systems, fault tolerance is still an issue of growing concern. The large number of virtual machines and electronic components, as well as software complexity and overall system reliability, availability and serviceability (RAS), are factors with which HPC systems in the cloud must contend. The reactive fault tolerance approach of checkpoint/restart, which is commonly used in HPC systems, does not scale well in the cloud due to resource sharing and distributed systems networks. Hence, the need for reliable fault tolerant HPC systems is even greater in a cloud environment. In this thesis we present a proactive fault tolerance approach to HPC systems in the cloud to reduce the wall-clock execution time, as well as dollar cost, in the presence of hardware failure. We have developed a generic fault tolerance algorithm for HPC systems in the cloud. We have further developed a cost model for executing computation-intensive applications on HPC systems in the cloud. Our experimental results obtained from a real cloud execution environment show that the wall-clock execution time and cost of running computation-intensive applications in the cloud can be considerably reduced compared to checkpoint and redundancy techniques used in traditional HPC systems

    Business Integration as a Service

    No full text
    This paper presents Business Integration as a Service (BIaS) which enables connections between services operating in the Cloud. BIaS integrates different services and business activities to achieve a streamline process. We illustrate this integration using two services; Return on Investment (ROI) Measurement as a Service (RMaaS) and Risk Analysis as a Service (RAaaS) in two case studies at the University of Southampton and Vodafone/Apple. The University of Southampton case study demonstrates the cost-savings and the risk analysis achieved, so two services can work as a single service. The Vodafone/Apple case study illustrates statistical analysis and 3D Visualisation of expected revenue and associated risk. These two cases confirm the benefits of BIaS adoption, including cost reduction and improvements in efficiency and risk analysis. Implementation of BIaS in other organisations is also discussed. Important data arising from the integration of RMaaS and RAaaS are useful for management of University of Southampton and potential and current investors for Vodafone/Apple
    • …
    corecore