1,059,665 research outputs found

    Structural reliability analysis of laminated CMC components

    Get PDF
    For laminated ceramic matrix composite (CMC) materials to realize their full potential in aerospace applications, design methods and protocols are a necessity. The time independent failure response of these materials is focussed on and a reliability analysis is presented associated with the initiation of matrix cracking. A public domain computer algorithm is highlighted that was coupled with the laminate analysis of a finite element code and which serves as a design aid to analyze structural components made from laminated CMC materials. Issues relevant to the effect of the size of the component are discussed, and a parameter estimation procedure is presented. The estimation procedure allows three parameters to be calculated from a failure population that has an underlying Weibull distribution

    Reliability improvement of electronic circuits based on physical failure mechanisms in components

    Get PDF
    Traditionally the position of reliability analysis in the design and production process of electronic circuits is a position of reliability verification. A completed design is checked on reliability aspects and either rejected or accepted for production. This paper describes a method to model physical failure mechanisms within components in such a way that they can be used for reliability optimization, not after, but during the early phase of the design process. Furthermore a prototype of a CAD software tool is described, which can highlight components likely to fail and automatically adjust circuit parameters to improve product reliability

    Stochastic comparisons of series and parallel systems with randomized independent components

    Get PDF
    Consider a series or parallel system of independent components and assume that the components are randomly chosen from two different batches, with the components of the first batch being more reliable than those of the second. In this note it is shown that the reliability of the system increases, in usual stochastic order sense, as the random number of components chosen from the first batch increases in increasing convex order. As a consequence, we establish a result analogous to the Parrondo's paradox, which shows that randomness in the number of components extracted from the two batches improves the reliability of the series syste

    Sensitivity Analysis for a Scenario-Based Reliability Prediction Model

    Get PDF
    As a popular means for capturing behavioural requirements, scenariosshow how components interact to provide system-level functionality.If component reliability information is available, scenarioscan be used to perform early system reliability assessment. Inprevious work we presented an automated approach for predictingsoftware system reliability that extends a scenario specificationto model (1) the probability of component failure, and (2) scenariotransition probabilities. Probabilistic behaviour models ofthe system are then synthesized from the extended scenario specification.From the system behaviour model, reliability predictioncan be computed. This paper complements our previous work andpresents a sensitivity analysis that supports reasoning about howcomponent reliability and usage profiles impact on the overall systemreliability. For this purpose, we present how the system reliabilityvaries as a function of the components reliabilities and thescenario transition probabilities. Taking into account the concurrentnature of component-based software systems, we also analysethe effect of implied scenarios prevention into the sensitivity analysisof our reliability prediction technique

    Rich Interfaces for Dependability: Compositional Methods for Dynamic Fault Trees and Arcade models

    Get PDF
    This paper discusses two behavioural interfaces for reliability analysis: dynamic fault trees, which model the system reliability in terms of the reliability of its components and Arcade, which models the system reliability at an architectural level. For both formalisms, the reliability is analyzed by transforming the DFT or Arcade model to a set of input-output Markov Chains. By using compositional aggregation techniques based on weak bisimilarity, significant reductions in the state space can be obtained

    A compositional method for reliability analysis of workflows affected by multiple failure modes

    Get PDF
    We focus on reliability analysis for systems designed as workflow based compositions of components. Components are characterized by their failure profiles, which take into account possible multiple failure modes. A compositional calculus is provided to evaluate the failure profile of a composite system, given failure profiles of the components. The calculus is described as a syntax-driven procedure that synthesizes a workflows failure profile. The method is viewed as a design-time aid that can help software engineers reason about systems reliability in the early stage of development. A simple case study is presented to illustrate the proposed approach
    corecore