116,703 research outputs found

    Adaptive end-to-end optimization of mobile video streaming using QoS negotiation

    Get PDF
    Video streaming over wireless links is a non-trivial problem due to the large and frequent changes in the quality of the underlying radio channel combined with latency constraints. We believe that every layer in a mobile system must be prepared to adapt its behavior to its environment. Thus layers must be capable of operating in multiple modes; each mode will show a different quality and resource usage. Selecting the right mode of operation requires exchange of information between interacting layers. For example, selecting the best channel coding requires information about the quality of the channel (capacity, bit-error-rate) as well as the requirements (latency, reliability) of the compressed video stream generated by the source encoder. In this paper we study the application of our generic QoS negotiation scheme to a specific configuration for mobile video transmission. We describe the results of experiments studying the overall effectiveness, stability, and dynamics of adaptation of our distributed optimization approach

    On the adaptation of broadcast transactions in token-passing fieldbus networks with heterogeneous transmission media

    Get PDF
    Broadcast networks that are characterised by having different physical layers (PhL) demand some kind of traffic adaptation between segments, in order to avoid traffic congestion in linking devices. In many LANs, this problem is solved by the actual linking devices, which use some kind of flow control mechanism that either tell transmitting stations to pause (the transmission) or just discard frames. In this paper, we address the case of token-passing fieldbus networks operating in a broadcast fashion and involving message transactions over heterogeneous (wired or wireless) physical layers. For the addressed case, real-time and reliability requirements demand a different solution to the traffic adaptation problem. Our approach relies on the insertion of an appropriate idle time before a station issuing a request frame. In this way, we guarantee that the linking devices’ queues do not increase in a way that the timeliness properties of the overall system turn out to be unsuitable for the targeted applications

    Video streaming evaluation Of H.264 SVC on IEEE 802.11g wireless network

    Get PDF
    Scalable video coding (SVC) is gaining great interest because of its ability and scalability to adapt in various conditions of network. The term of scalability is referring to the removal of parts of the video bitstream in order to adapt it to the various needs or preferences of end users as well as to varying terminal capabilities or network conditions. SVC allows partial transmission and decoding of a bitstream [1]. It contains the base layer and the enhancement layers. The base layer should be transmitted with very high reliability. On the other hand, the enhancement layers might be dropped or only transmitted partially according to the available network bitrates [2, 3]. This allows very fast and accurate network adaptation to variable bit rate channel

    A CRC usefulness assessment for adaptation layers in satellite systems

    Get PDF
    This paper assesses the real usefulness of CRCs in today's satellite network-to-link adaptation layers under the lights of enhanced error control and framing techniques, focusing on the DVB-S and DVB-S2 standards. Indeed, the outer block codes of their FEC schemes (Reed-Solomon and BCH, respectively) can provide very accurate error-detection information to the receiver in addition to their correction capabilities, at virtually no cost. This handy feature could be used to manage on a frame-by-frame basis what CRCs do locally, on the frames' contents, saving the bandwidth and processing load associated with them, and paving the way for enhanced transport of IP over DVB-S2. Mathematical and experimental results clearly show that if FEC has been properly congured for combined error correction and detection, having an uncorrected event after FEC decoding is likely to be an extremely improbable event. Under such conditions, it seems possible and attractive to optimize the way global error-control is done over satellite links by reducing the role of CRCs, or even by removing them from the overall encapsulation process
    corecore