734 research outputs found

    Tools for modelling and simulating migration-based preservation

    No full text
    This report describes two tools for modelling and simulating the costs and risks of using IT storage systems for the long-term archiving of file-based AV assets. The tools include a model of storage costs, the ingest and access of files, the possibility of data corruption and loss from a range of mechanisms, and the impact of having limited resources with which to fulfill access requests and preservation actions. Applications include archive planning, development of a technology strategy, cost estimation for business planning, operational decision support, staff training and generally promoting awareness of the issues and challenges archives face in digital preservation

    SPA: On-Line Availability Upgrades for Parity-based RAIDs through Supplementary Parity Augmentations

    Get PDF
    In this paper, we propose a simple but powerful on-line availability upgrade mechanism, Supplementary Parity Augmentations (SPA), to address the availability issue for parity-based RAID systems. The basic idea of SPA is to store and update the supplementary parity units on one or a few newly augmented spare disks for on-line RAID systems in the operational mode, thus achieving the goals of improving the reconstruction performance while tole-rating multiple disk failures and latent sector errors simultaneously. By applying the exclusive OR operations appropriately among supplementary parity, full parity and data units, SPA can reconstruct the data on the failed disks with a fraction of the original overhead that is proportional to the supplementary parity coverage, thus significantly reducing the overhead of data regeneration and decreasing recovery time in parity-based RAID systems. In particular, SPA has two supplementary-parity coverage orientations, SPA Vertical and SPA Diagonal, which cater to user’s different availability needs. The former, which calculates the supplementary parity of a fixed subset of the disks, can tolerate more disk failures and sector errors; whereas, the latter shifts the coverage of supplementary parity by one disk for each stripe to balance the workload and thus maximize the performance of reconstruction during recovery. The SPA with a single supplementary-parity disk can be viewed as a variant of but significantly different from the RAID5+0 architecture in that the former can easily and dynamically upgrade a RAID5 system to a RAID5+0-like system without any change to the data layout of the RAID5 system. Our extensive trace-driven simulation study shows that both SPA orientations can significantly improve the reconstruction performance of the RAID5 system while SPA Diagonal significantly improves the reconstruction performance of RAID5+0, at an acceptable performance overhead imposed in the operational mode. Moreover, our reliability analytical modeling and Sequential Monte-Carlo simulation demonstrate that both SPA orientations consistently more than double the MTTDL of the RAID5 system and improve the reliability of the RAID5+0 system noticeably

    RAID Level 6 and Level 6+ Reliability

    Get PDF
    Storage systems are built of fallible components but have to provide high degrees of reliability. Besides mirroring and triplicating data, redundant storage of information using erasure-correcting codes is the only possibility to have data survive device failure.We provide here exact formula for the data-loss probability of a disk array composed of several RAID Level 6 stripes. This two-failure tolerant is not only used in practice but can also provide a reference point for the assessment of other data organizations

    Redundancy and Aging of Efficient Multidimensional MDS-Parity Protected Distributed Storage Systems

    Full text link
    The effect of redundancy on the aging of an efficient Maximum Distance Separable (MDS) parity--protected distributed storage system that consists of multidimensional arrays of storage units is explored. In light of the experimental evidences and survey data, this paper develops generalized expressions for the reliability of array storage systems based on more realistic time to failure distributions such as Weibull. For instance, a distributed disk array system is considered in which the array components are disseminated across the network and are subject to independent failure rates. Based on such, generalized closed form hazard rate expressions are derived. These expressions are extended to estimate the asymptotical reliability behavior of large scale storage networks equipped with MDS parity-based protection. Unlike previous studies, a generic hazard rate function is assumed, a generic MDS code for parity generation is used, and an evaluation of the implications of adjustable redundancy level for an efficient distributed storage system is presented. Results of this study are applicable to any erasure correction code as long as it is accompanied with a suitable structure and an appropriate encoding/decoding algorithm such that the MDS property is maintained.Comment: 11 pages, 6 figures, Accepted for publication in IEEE Transactions on Device and Materials Reliability (TDMR), Nov. 201
    • …
    corecore