4,669 research outputs found

    Integrating Random Shocks Into Multi-State Physics Models of Degradation Processes for Component Reliability Assessment

    No full text
    International audienceWe extend a multi-state physics model (MSPM) framework for component reliability assessment by including semi-Markov and random shock processes. Two mutually ex-clusive types of random shocks are considered: extreme, and cumulative. Extreme shocks lead the component to immediate failure, whereas cumulative shocks simply affect the component degradation rates. General dependences between the degradation and the two types of random shocks are considered. A Monte Carlo simulation algorithm is implemented to compute component state probabilities. An illustrative example is presented, and a sensitivity analysis is conducted on the model parameters. The results show that our extended model is able to characterize the influences of different types of random shocks onto the component state probabilities and the reliability estimates

    Reliability and Condition-Based Maintenance Analysis of Deteriorating Systems Subject to Generalized Mixed Shock Model

    Get PDF
    For successful commercialization of evolving devices (e.g., micro-electro-mechanical systems, and biomedical devices), there must be new research focusing on reliability models and analysis tools that can assist manufacturing and maintenance of these devices. These advanced systems may experience multiple failure processes that compete against each other. Two major failure processes are identified to be deteriorating or degradation processes (e.g., wear, fatigue, erosion, corrosion) and random shocks. When these failure processes are dependent, it is a challenging problem to predict reliability of complex systems. This research aims to develop reliability models by exploring new aspects of dependency between competing risks of degradation-based and shock-based failure considering a generalized mixed shock model, and to develop new and effective condition-based maintenance policies based on the developed reliability models. In this research, different aspects of dependency are explored to accurately estimate the reliability of complex systems. When the degradation rate is accelerated as a result of withstanding a particular shock pattern, we develop reliability models with a changing degradation rate for four different shock patterns. When the hard failure threshold reduces due to changes in degradation, we investigate reliability models considering the dependence of the hard failure threshold on the degradation level for two different scenarios. More generally, when the degradation rate and the hard failure threshold can simultaneously transition multiple times, we propose a rich reliability model for a new generalized mixed shock model that is a combination of extreme shock model, δ-shock model and run shock model. This general assumption reflects complex behaviors associated with modern systems and structures that experience multiple sources of external shocks. Based on the developed reliability models, we introduce new condition-based maintenance strategies by including various maintenance actions (e.g., corrective replacement, preventive replacement, and imperfect repair) to minimize the expected long-run average maintenance cost rate. The decisions for maintenance actions are made based on the health condition of systems that can be observed through periodic inspection. The reliability and maintenance models developed in this research can provide timely and effective tools for decision-makers in manufacturing to economically optimize operational decisions for improving reliability, quality and productivity.Industrial Engineering, Department o

    Component Maintenance Strategies and Risk Analysis for Random Shock Effects Considering Maintenance Costs

    Get PDF
    Maintenance can improve a system’s reliability in a long operation period or when a component has failed. The reliability modeling method that uses the stochastic process degradation model to describe the system degradation process has been widely used. However, the existing reliability models established using stochastic processes only consider the internal degradation process, and do not fully consider the impact of external random shocks on their reliability modeling. Furthermore, the existing theory of importance does not consider the actual factors of maintenance cost. In this paper, based on the reliability modeling of random processes, the degradation rate under the influence of random shocks is introduced into the time scale function to solve the impact of random shocks on product reliability, and two cost importance measures are proposed to guide the maintenance selection of the components under limited resources in the system.Finally, a subsystem of an aircraft hydraulic system is analyzed to verify the proposed method’s performance

    Modeling dependent competing failure processes with degradation-shock dependence

    Get PDF
    In this paper, we develop a new reliability model for dependent competing failure processes (DCFPs), which accounts for degradation-shock dependence. This is a type of dependence where random shock processes are influenced by degradation processes. The degradation-shock dependence is modeled by assuming that the intensity function of the nonhomogeneous Poisson process describing the random shock processes is dependent on the degradation processes. The dependence effect is modeled with reference to a classification of the random shocks in three “zones” according to their magnitudes, damage zone, fatal zone, and safety zone, with different effects on the system's failure behavior. To the best of the authors’ knowledge, this type of dependence has not yet been considered in reliability models. Monte Carlo simulation is used to calculate the system reliability. A realistic application is presented with regards to the dependent failure behavior of a sliding spool, which is subject to two dependent competing failure processes, wear and clamping stagnation. It is shown that the developed model is capable of describing the dependent competing failure behaviors and their dependence

    Un cadre holistique de la modélisation de la dégradation pour l’analyse de fiabilité et optimisation de la maintenance de systèmes de sécurité nucléaires

    Get PDF
    Components of nuclear safety systems are in general highly reliable, which leads to a difficulty in modeling their degradation and failure behaviors due to the limited amount of data available. Besides, the complexity of such modeling task is increased by the fact that these systems are often subject to multiple competing degradation processes and that these can be dependent under certain circumstances, and influenced by a number of external factors (e.g. temperature, stress, mechanical shocks, etc.). In this complicated problem setting, this PhD work aims to develop a holistic framework of models and computational methods for the reliability-based analysis and maintenance optimization of nuclear safety systems taking into account the available knowledge on the systems, degradation and failure behaviors, their dependencies, the external influencing factors and the associated uncertainties.The original scientific contributions of the work are: (1) For single components, we integrate random shocks into multi-state physics models for component reliability analysis, considering general dependencies between the degradation and two types of random shocks. (2) For multi-component systems (with a limited number of components):(a) a piecewise-deterministic Markov process modeling framework is developed to treat degradation dependency in a system whose degradation processes are modeled by physics-based models and multi-state models; (b) epistemic uncertainty due to incomplete or imprecise knowledge is considered and a finite-volume scheme is extended to assess the (fuzzy) system reliability; (c) the mean absolute deviation importance measures are extended for components with multiple dependent competing degradation processes and subject to maintenance; (d) the optimal maintenance policy considering epistemic uncertainty and degradation dependency is derived by combining finite-volume scheme, differential evolution and non-dominated sorting differential evolution; (e) the modeling framework of (a) is extended by including the impacts of random shocks on the dependent degradation processes.(3) For multi-component systems (with a large number of components), a reliability assessment method is proposed considering degradation dependency, by combining binary decision diagrams and Monte Carlo simulation to reduce computational costs.Composants de systèmes de sûreté nucléaire sont en général très fiable, ce qui conduit à une difficulté de modéliser leurs comportements de dégradation et d'échec en raison de la quantité limitée de données disponibles. Par ailleurs, la complexité de cette tâche de modélisation est augmentée par le fait que ces systèmes sont souvent l'objet de multiples processus concurrents de dégradation et que ceux-ci peut être dépendants dans certaines circonstances, et influencé par un certain nombre de facteurs externes (par exemple la température, le stress, les chocs mécaniques, etc.).Dans ce cadre de problème compliqué, ce travail de thèse vise à développer un cadre holistique de modèles et de méthodes de calcul pour l'analyse basée sur la fiabilité et la maintenance d'optimisation des systèmes de sûreté nucléaire en tenant compte des connaissances disponibles sur les systèmes, les comportements de dégradation et de défaillance, de leurs dépendances, les facteurs influençant externes et les incertitudes associées.Les contributions scientifiques originales dans la thèse sont:(1) Pour les composants simples, nous intégrons des chocs aléatoires dans les modèles de physique multi-états pour l'analyse de la fiabilité des composants qui envisagent dépendances générales entre la dégradation et de deux types de chocs aléatoires.(2) Pour les systèmes multi-composants (avec un nombre limité de composants):(a) un cadre de modélisation de processus de Markov déterministes par morceaux est développé pour traiter la dépendance de dégradation dans un système dont les processus de dégradation sont modélisées par des modèles basés sur la physique et des modèles multi-états; (b) l'incertitude épistémique à cause de la connaissance incomplète ou imprécise est considéré et une méthode volumes finis est prolongée pour évaluer la fiabilité (floue) du système; (c) les mesures d'importance de l'écart moyen absolu sont étendues pour les composants avec multiples processus concurrents dépendants de dégradation et soumis à l'entretien; (d) la politique optimale de maintenance compte tenu de l'incertitude épistémique et la dépendance de dégradation est dérivé en combinant schéma volumes finis, évolution différentielle et non-dominée de tri évolution différentielle; (e) le cadre de la modélisation de (a) est étendu en incluant les impacts des chocs aléatoires sur les processus dépendants de dégradation.(3) Pour les systèmes multi-composants (avec un grand nombre de composants), une méthode d'évaluation de la fiabilité est proposé considérant la dépendance dégradation en combinant des diagrammes de décision binaires et simulation de Monte Carlo pour réduire le coût de calcul
    corecore