389 research outputs found

    Fly-By-Wireless for Next Generation Aircraft: Challenges and Potential solutions

    Get PDF
    ”Fly-By-Wireless” paradigm based on wireless connectivity in aircraft has the potential to improve efficiency and flexibility, while reducing weight, fuel consumption and maintenance costs. In this paper, first, the opportunities and challenges for wireless technologies in safety-critical avionics context are discussed. Then, the assessment of such technologies versus avionics requirements is provided in order to select the most appropriate one for a wireless aircraft application. As a result, the design of a Wireless Avionics Network based on Ultra WideBand technology is investigated, considering the issues of determinism, reliability and security

    Performance of Real-TimeWireless Communication for Railway Environments with IEEE 802.11p

    Get PDF
    IEEE 802.11p complements the widespread 802.11 standard for use in vehicular environments. Designed for communication between wireless devices in rapidly changing environments, it handles situations where connection and communication must be completed in very short periods of time. Even though this is supposed to be a substantial improvement and essential for real-time applications, latencies have been rarely investigated in existing studies. Based on practical experiments, we evaluate how beneficial 802.11p’s changes in comparison to regular 802.11n are and whether the usage of IEEE 802.11p is suitable within environments with real-time constraints. We compare latencies of networks in OCB mode to both networks in IBSS (ad-hoc) and BSS/AP (access point) mode by measuring the initial connection speed and the latency of ICMP packets’ round-trip times. Furthermore, the response of the latter to disturbances is measured. The results show OCB to be superior to both BSS/AP and IBSS modes in average latency, maximum latency, and standard deviation under all tested circumstances

    SymbioCity: Smart Cities for Smarter Networks

    Get PDF
    The "Smart City" (SC) concept revolves around the idea of embodying cutting-edge ICT solutions in the very fabric of future cities, in order to offer new and better services to citizens while lowering the city management costs, both in monetary, social, and environmental terms. In this framework, communication technologies are perceived as subservient to the SC services, providing the means to collect and process the data needed to make the services function. In this paper, we propose a new vision in which technology and SC services are designed to take advantage of each other in a symbiotic manner. According to this new paradigm, which we call "SymbioCity", SC services can indeed be exploited to improve the performance of the same communication systems that provide them with data. Suggestive examples of this symbiotic ecosystem are discussed in the paper. The dissertation is then substantiated in a proof-of-concept case study, where we show how the traffic monitoring service provided by the London Smart City initiative can be used to predict the density of users in a certain zone and optimize the cellular service in that area.Comment: 14 pages, submitted for publication to ETT Transactions on Emerging Telecommunications Technologie
    • 

    corecore