13,670 research outputs found

    Enhancement of the duty cycle cooperative medium access control for wireless body area networks

    Get PDF
    This paper presents a novel energy-efficient and reliable connection to enhance the transmission of data over a shared medium for wireless body area networks (WBAN). We propose a novel protocol of two master nodes-based cooperative protocol. In the proposed protocol, two master nodes were considered, that is, the belt master node and the outer body master node. The master nodes work cooperatively to avoid the retransmission process by sensors due to fading and collision, reducing the bit error rate (BER), which results in a reduction of the duty cycle and average transmission power. In addition, we have also presented a mathematical model of the duty cycle with the proposed protocol for the WBAN. The results show that the proposed cooperative protocol reduced the BER by a factor of 4. The average transmission power is reduced by a factor of 0.21 and this shows the potential of the proposed technique to be used in future wearable wireless sensors and systems

    Wireless sensor networks with QoS for e-health and e-emergency applications

    Get PDF
    http://www.informatik.uni-trier.de/%7Eley/db/conf/icsoft/ehst2008.htmlMost body sensor networks (BSN) only offer best-effort service delivery, which may compromise the successful operation of emergency healthcare (e-emergency) applications. Due to its real-time nature, e-emergency systems must provide quality of service (QoS) support, in order to provide a pervasive, valuable and fully reliable assistance to patients with risk abnormalities. But what is the real meaning of QoS support within the e-emergency context? What benefits can QoS mechanisms bring to e-emergency systems, and how are they being deployed? In order to answer these questions, this paper firstly discusses the need of QoS in personal wireless healthcare systems, and then presents an overview of such systems with QoS. A case-study requiring QoS support, intended to be deployed in a healthcare unit, is presented, as well as an asynchronous medium access TDMA-based model
    corecore