4,919 research outputs found

    Performance Trade-Offs in Cyber–Physical Control Applications With Multi-Connectivity

    Get PDF
    Modern communication devices are often equipped with multiple wireless communication interfaces with diverse characteristics. This enables exploiting a form of multi-connectivity known as interface diversity to provide path diversity with multiple communication interfaces. Interface diversity helps to combat the problems suffered by single-interface systems due to error bursts in the link, which are a consequence of temporal correlation in the wireless channel. The length of an error burst is an essential performance indicator for cyber–physical control applications with periodic traffic, as this defines the period in which the control link is unavailable. However, the available interfaces must be correctly orchestrated to achieve an adequate trade-off between latency, reliability, and energy consumption. This work investigates how the packet error statistics from different interfaces impact the overall latency–reliability characteristics and explores mechanisms to derive adequate interface diversity policies. For this, we model the optimization problem as a partially observable Markov decision process (POMDP), where the state of each interface is determined by a Gilbert–Elliott model whose parameters are estimated based on experimental measurement traces from LTE and Wi-Fi. Our results show that the POMDP approach provides an all-round adaptable solution, whose performance is only 0.1% below the absolute upper bound, dictated by the optimal policy under the impractical assumption of full observability

    Access and metro network convergence for flexible end-to-end network design

    Get PDF
    This paper reports on the architectural, protocol, physical layer, and integrated testbed demonstrations carried out by the DISCUS FP7 consortium in the area of access - metro network convergence. Our architecture modeling results show the vast potential for cost and power savings that node consolidation can bring. The architecture, however, also recognizes the limits of long-reach transmission for low-latency 5G services and proposes ways to address such shortcomings in future projects. The testbed results, which have been conducted end-to-end, across access - metro and core, and have targeted all the layers of the network from the application down to the physical layer, show the practical feasibility of the concepts proposed in the project

    A packet error recovery scheme for vertical handovers mobility management protocols

    Get PDF
    Mobile devices are connecting to the Internet through an increasingly heterogeneous network environment. This connectivity via multiple types of wireless networks allows the mobile devices to take advantage of the high speed and the low cost of wireless local area networks and the large coverage of wireless wide area networks. In this context, we propose a new handoff framework for switching seamlessly between the different network technologies by taking advantage of the temporary availability of both the old and the new network technology through the use of an "on the fly" erasure coding method. The goal is to demonstrate that our framework, based on a real implementation of such coding scheme, 1) allows the application to achieve higher goodput rate compared to existing bicasting proposals and other erasure coding schemes; 2) is easy to configure and as a result 3) is a perfect candidate to ensure the reliability of vertical handovers mobility management protocols. In this paper, we present the implementation of such framework and show that our proposal allows to maintain the TCP goodput(with a negligible transmission overhead) while providing in a timely manner a full reliability in challenged conditions

    Enabling On-Demand Cyber-Physical Control Applications with UAV Access Points

    Full text link
    Achieving cyber-physical control over a wireless channel requires satisfying both the timeliness of a single packet and preserving the latency reliability across several consecutive packets. To satisfy those requirements as an ubiquitous service requires big infrastructural developments, or flexible on-demand equipment such as UAVs. To avoid the upfront cost in terms of finance and energy, this paper analyzes the capability of UAV access points (UAVAPs) to satisfy the requirements for cyber-physical traffic. To investigate this, we perform a Gilbert-Eliott burst-error analysis that is analytically derived as a combination of two separate latency measurement campaigns and provide an upper-bound analysis of the UAVAP system. The analysis is centered around a UAVAP that uses its LTE connection to reach the backhaul, while providing service to ground nodes (GNs) with a Wi-Fi access point (AP). Thus, we combine both measurement campaigns to analyze the plausibility of the described setup in casual, crowded or mixed network settings.Comment: To be published in proceedings of VTC-fall 202

    Application Protocols enabling Internet of Remote Things via Random Access Satellite Channels

    Full text link
    Nowadays, Machine-to-Machine (M2M) and Internet of Things (IoT) traffic rate is increasing at a fast pace. The use of satellites is expected to play a large role in delivering such a traffic. In this work, we investigate the use of two of the most common M2M/IoT protocols stacks on a satellite Random Access (RA) channel, based on DVB-RCS2 standard. The metric under consideration is the completion time, in order to identify the protocol stack that can provide the best performance level

    A packet error recovery scheme for vertical handovers mobility management protocols

    Get PDF
    Mobile devices are connecting to the Internet through an increasingly heterogeneous network environment. This connectivity via multiple types of wireless networks allows the mobile devices to take advantage of the high speed and the low cost of wireless local area networks and the large coverage of wireless wide area networks. In this context, we propose a new handoff framework for switching seamlessly between the different network technologies by taking advantage of the temporary availability of both the old and the new network technology through the use of an “on the fly” erasure coding method. The goal is to demonstrate that our framework, based on a real implementation of such coding scheme, 1) allows the application to achieve higher goodput rate compared to existing bicasting proposals and other erasure coding schemes; 2) is easy to configure and as a result 3) is a perfect candidate to ensure the reliability of vertical handovers mobility management protocols. In this paper, we present the implementation of such framework and show that our proposal allows to maintain the TCP goodput (with a negligible transmission overhead) while providing in a timely manner a full reliability in challenged conditions
    corecore