143 research outputs found

    A smartwater metering deployment based on the fog computing paradigm

    Get PDF
    In this paper, we look into smart water metering infrastructures that enable continuous, on-demand and bidirectional data exchange between metering devices, water flow equipment, utilities and end-users. We focus on the design, development and deployment of such infrastructures as part of larger, smart city, infrastructures. Until now, such critical smart city infrastructures have been developed following a cloud-centric paradigm where all the data are collected and processed centrally using cloud services to create real business value. Cloud-centric approaches need to address several performance issues at all levels of the network, as massive metering datasets are transferred to distant machine clouds while respecting issues like security and data privacy. Our solution uses the fog computing paradigm to provide a system where the computational resources already available throughout the network infrastructure are utilized to facilitate greatly the analysis of fine-grained water consumption data collected by the smart meters, thus significantly reducing the overall load to network and cloud resources. Details of the system's design are presented along with a pilot deployment in a real-world environment. The performance of the system is evaluated in terms of network utilization and computational performance. Our findings indicate that the fog computing paradigm can be applied to a smart grid deployment to reduce effectively the data volume exchanged between the different layers of the architecture and provide better overall computational, security and privacy capabilities to the system

    An Intelligent Real-Time Edge Processing Maintenance System for Industrial Manufacturing, Control, and Diagnostic

    Get PDF
    This paper presents an artificial intelligence (AI) based edge processing real-time maintenance system for the purposes of industrial manufacturing control and diagnostics. The system is evaluated in a soybean processing manufacturing facility to identify abnormalities and possible breakdown situations, prevent damage, reduce maintenance costs, and increase production productivity. The system can be used in any other manufacturing or chemical processing facility that make use of motors rotating equipment in different process phases. The system combines condition monitoring, fault detection, and diagnosis using machine learning (ML) and deep learning (DL) algorithms. These algorithms are used with data resulting from the continuous monitoring of relevant production equipment and motor parameters, such as temperature, vibration, sound/noise, and current/voltage. The condition monitoring integrates intelligent Industrial Internet of Things (IIoT) devices with multiple sensors combined with AI-based techniques and edge processing. This is done to identify the parameter modifications and distinctive patterns that occur before a failure and predict forthcoming failure modes before they arise. The data from production equipment/motors is collected wirelessly using different communication protocols - such as Bluetooth low energy (BLE), Long range wide area network (LoRaWAN), and Wi-Fi - and aggregated into an edge computing processing unit via several gateways. The AI-based algorithms are embedded in the processing unit at the edge, allowing the prediction and intelligent control of the production equipment/motor parameters. IIoT devices for environmental sensing, vibration, temperature monitoring, and sound/ultrasound detection are used with embedded signal processing that runs on an ARM Cortex-M4 microcontroller. These devices are connected through either wired or wireless protocols. The system described addresses the components necessary for implementing the predictive maintenance (PdM) strategy in soybean industrial processing manufacturing environments. Additionally, it includes new elements that broaden the possibilities for prescriptive maintenance (PsM) developments to be made. The type of ML or DL techniques and algorithms used in maintenance modeling is dictated by the application and available data. The approach presented combines multiple data sources that improve the accuracy of condition monitoring and prediction. DL methods further increase the accuracy and require interpretable and efficient methods as well as the availability of significant amounts of (labeled) data.publishedVersio

    Architecting and deploying IoT smart applications: A performance–oriented approach

    Get PDF
    open7siLayered internet of things (IoT) architectures have been proposed over the last years as they facilitate understanding the roles of different networking, hardware, and software components of smart applications. These are inherently distributed, spanning from devices installed in the field up to a cloud datacenter and further to a user smartphone, passing by intermediary stages at different levels of fog computing infrastructure. However, IoT architectures provide almost no hints on where components should be deployed. IoT Software Platforms derived from the layered architectures are expected to adapt to scenarios with different characteristics, requirements, and constraints from stakeholders and applications. In such a complex environment, a one-size-fits-all approach does not adapt well to varying demands and may hinder the adoption of IoT Smart Applications. In this paper, we propose a 5-layer IoT Architecture and a 5-stage IoT Computing Continuum, as well as provide insights on the mapping of software components of the former into physical locations of the latter. Also, we conduct a performance analysis study with six configurations where components are deployed into different stages. Our results show that different deployment configurations of layered components into staged locations generate bottlenecks that affect system performance and scalability. Based on that, policies for static deployment and dynamic migration of layered components into staged locations can be identified.openZyrianoff I.; Heideker A.; Silva D.; Kleinschmidt J.; Soininen J.-P.; Cinotti T.S.; Kamienski C.Zyrianoff I.; Heideker A.; Silva D.; Kleinschmidt J.; Soininen J.-P.; Cinotti T.S.; Kamienski C

    Multi-Protocol Sensor Node for Internet of Things (IoT) Applications

    Get PDF
    This paper will describe the implementation of an end-to-end IoT solution, focusing specifically in the multi-protocol sensor node using Pycom's FiPy board. A performance assessment will be presented, addressing a comparison between the different protocols (LoRa vs. Wi-Fi) in terms radio coverage, timing issues, power consumption/battery usage, among others. Further, it will be investigated the integration onto the sensor node different sensor/actuator circuit blocks for energy metering on industrial machinery as a way to optimize energy efficiency metrics. This will provide a practical use case in the field of Industry 4.0, leading to insights for power quality monitoring

    A Novel Real-Time Edge-Cloud Big Data Management and Analytics Framework for Smart Cities

    Get PDF
    Exposing city information to dynamic, distributed, powerful, scalable, and user-friendly big data systems is expected to enable the implementation of a wide range of new opportunities; however, the size, heterogeneity and geographical dispersion of data often makes it difficult to combine, analyze and consume them in a single system. In the context of the H2020 CLASS project, we describe an innovative framework aiming to facilitate the design of advanced big-data analytics workflows. The proposal covers the whole compute continuum, from edge to cloud, and relies on a well-organized distributed infrastructure exploiting: a) edge solutions with advanced computer vision technologies enabling the real-time generation of “rich” data from a vast array of sensor types; b) cloud data management techniques offering efficient storage, real-time querying and updating of the high-frequency incoming data at different granularity levels. We specifically focus on obstacle detection and tracking for edge processing, and consider a traffic density monitoring application, with hierarchical data aggregation features for cloud processing; the discussed techniques will constitute the groundwork enabling many further services. The tests are performed on the real use-case of the Modena Automotive Smart Area (MASA)

    Resilient IoT-based Monitoring System for Crude Oil Pipelines

    Get PDF
    International audiencePipeline networks dominate the oil and gas mid-stream sector, and although the safest means of transportation for oil and gas products, they are susceptible to failures. These failures are due to manufacturing defects, environmental effects, material degradation, or third party interference through sabotage and vandalism. Internet of Things (IoT)-based solutions are promising to address these by monitoring and predicting failures. However, some challenges remain in the deployment of industrial IoT-based solutions, as the reliability, the robustness, the maintainability, the scalability, the energy consumption, etc. This paper is therefore aimed at highlighting potential solutions for detection and mitigation of pipeline failures while addressing the robustness, the cost and scalability issues of such approach efficiently across the network infrastructure, data and service layers

    AI Knowledge Transfer from the University to Society

    Get PDF
    AI Knowledge Transfer from the University to Society: Applications in High-Impact Sectors brings together examples from the "Innovative Ecosystem with Artificial Intelligence for Andalusia 2025" project at the University of Seville, a series of sub-projects composed of research groups and different institutions or companies that explore the use of Artificial Intelligence in a variety of high-impact sectors to lead innovation and assist in decision-making. Key Features Includes chapters on health and social welfare, transportation, digital economy, energy efficiency and sustainability, agro-industry, and tourism Great diversity of authors, expert in varied sectors, belonging to powerful research groups from the University of Seville with proven experience in the transfer of knowledge to the productive sector and agents attached to the AndalucĂ­a TECH Campu

    Data Science and Knowledge Discovery

    Get PDF
    Data Science (DS) is gaining significant importance in the decision process due to a mix of various areas, including Computer Science, Machine Learning, Math and Statistics, domain/business knowledge, software development, and traditional research. In the business field, DS's application allows using scientific methods, processes, algorithms, and systems to extract knowledge and insights from structured and unstructured data to support the decision process. After collecting the data, it is crucial to discover the knowledge. In this step, Knowledge Discovery (KD) tasks are used to create knowledge from structured and unstructured sources (e.g., text, data, and images). The output needs to be in a readable and interpretable format. It must represent knowledge in a manner that facilitates inferencing. KD is applied in several areas, such as education, health, accounting, energy, and public administration. This book includes fourteen excellent articles which discuss this trending topic and present innovative solutions to show the importance of Data Science and Knowledge Discovery to researchers, managers, industry, society, and other communities. The chapters address several topics like Data mining, Deep Learning, Data Visualization and Analytics, Semantic data, Geospatial and Spatio-Temporal Data, Data Augmentation and Text Mining

    Reliability analysis of wireless sensor network for smart farming applications

    Get PDF
    Wireless Sensor Networks are subjected to some design constraints (e.g., processing capability, storage memory, energy consumption, fixed deployment, etc.) and to outdoor harsh conditions that deeply affect the network reliability. The aim of this work is to provide a deeper understanding about the way redundancy and node deployment affect the network reliability. In more detail, the paper analyzes the design and implementation of a wireless sensor network for low-power and low-cost applications and calculates its reliability considering the real environmental conditions and the real arrangement of the nodes deployed in the field. The reliability of the system has been evaluated by looking for both hardware failures and communication errors. A reliability prediction based on different handbooks has been carried out to estimate the failure rate of the nodes self-designed and self-developed to be used under harsh environments. Then, using the Fault Tree Analysis the real deployment of the nodes is taken into account considering the Wi-Fi coverage area and the possible communication link between nearby nodes. The findings show how different node arrangements provide significantly different reliability. The positioning is therefore essential in order to obtain maximum performance from a Wireless sensor network
    • …
    corecore