51 research outputs found

    Structured Backbone Design of CNs

    Get PDF
    Outline 1. Enterprise Backbone Basics 2. Structured Cabling 3. Types of Backbones 4. Backbone Examples 5. The Network Development Life Cycle (NDLC

    Structured design of an FDDI protocol handler

    Get PDF

    NASA/ASEE Summer Faculty Fellowship Program

    Get PDF
    This document is a collection of technical reports on research conducted by the participants in the 1993 NASA/ASEE Summer Faculty Fellowship Program at KSC. The basic common objectives of the Program are: to further the professional knowledge of qualified engineering and science faculty members; to stimulate an exchange of ideas between participants and NASA; to enrich and refresh the research and teaching activities of participants' institutions; and to contribute to the research objectives of the NASA centers. 1993 topics include wide band fiber optic communications, a prototype expert/information system for examining environmental risks of KSC activities, alternatives to premise wiring using ATM and microcellular technologies, rack insertion end effector (RIEE) automation, FTIR quantification of industrial hydraulic fluids in perchloroethylene, switch configuration for migration to optical fiber network, and more

    Dual-homing protection in IP-over-WDM networks

    Full text link

    Design and implementation of a fault-tolerant multimedia network and a local map based (LMB) self-healing scheme for arbitrary topology networks.

    Get PDF
    by Arion Ko Kin Wa.Thesis (M.Phil.)--Chinese University of Hong Kong, 1997.Includes bibliographical references (leaves 101-[106]).Chapter 1 --- Introduction --- p.1Chapter 1.1 --- Overview --- p.1Chapter 1.2 --- Service Survivability Planning --- p.2Chapter 1.3 --- Categories of Outages --- p.3Chapter 1.4 --- Goals of Restoration --- p.4Chapter 1.5 --- Technology Impacts on Network Survivability --- p.5Chapter 1.6 --- Performance Models and Measures in Quantifying Network Sur- vivability --- p.6Chapter 1.7 --- Organization of Thesis --- p.6Chapter 2 --- Design and Implementation of A Survivable High-Speed Mul- timedia Network --- p.8Chapter 2.1 --- An Overview of CUM LAUDE NET --- p.8Chapter 2.2 --- The Network Architecture --- p.9Chapter 2.2.1 --- Architectural Overview --- p.9Chapter 2.2.2 --- Router-Node Design --- p.11Chapter 2.2.3 --- Buffer Allocation --- p.12Chapter 2.2.4 --- Buffer Transmission Priority --- p.14Chapter 2.2.5 --- Congestion Control --- p.15Chapter 2.3 --- Protocols --- p.16Chapter 2.3.1 --- Design Overview --- p.16Chapter 2.3.2 --- ACTA - The MAC Protocol --- p.17Chapter 2.3.3 --- Protocol Layering --- p.18Chapter 2.3.4 --- "Segment, Datagram and Packet Format" --- p.20Chapter 2.3.5 --- Fast Packet Routing --- p.22Chapter 2.3.6 --- Local Host NIU --- p.24Chapter 2.4 --- The Network Restoration Strategy --- p.25Chapter 2.4.1 --- The Dual-Ring Model and Assumptions --- p.26Chapter 2.4.2 --- Scenarios of Network Failure and Remedies --- p.26Chapter 2.4.3 --- Distributed Fault-Tolerant Algorithm --- p.26Chapter 2.4.4 --- Distributed Auto-Healing Algorithm --- p.28Chapter 2.4.5 --- The Network Management Signals --- p.31Chapter 2.5 --- Performance Evaluation --- p.32Chapter 2.5.1 --- Restoration Time --- p.32Chapter 2.5.2 --- Reliability Measures --- p.34Chapter 2.5.3 --- Network Availability During Restoration --- p.41Chapter 2.6 --- The Prototype --- p.42Chapter 2.7 --- Technical Problems Encountered --- p.45Chapter 2.8 --- Chapter Summary and Future Development --- p.46Chapter 3 --- A Simple Experimental Network Management Software - NET- MAN --- p.48Chapter 3.1 --- Introduction to NETMAN --- p.48Chapter 3.2 --- Network Management Basics --- p.49Chapter 3.2.1 --- The Level of Management Protocols --- p.49Chapter 3.2.2 --- Architecture Model --- p.51Chapter 3.2.3 --- TCP/IP Network Management Protocol Architecture --- p.53Chapter 3.2.4 --- A Standard Network Management Protocol On Internet - SNMP --- p.54Chapter 3.2.5 --- A Standard For Managed Information --- p.55Chapter 3.3 --- The CUM LAUDE Network Management Protocol Suite (CNMPS) --- p.56Chapter 3.3.1 --- The Architecture --- p.53Chapter 3.3.2 --- Goals of the CNMPS --- p.59Chapter 3.4 --- Highlights of NETMAN --- p.61Chapter 3.5 --- Functional Descriptions of NETMAN --- p.63Chapter 3.5.1 --- Topology Menu --- p.64Chapter 3.5.2 --- Fault Manager Menu --- p.65Chapter 3.5.3 --- Performance Meter Menu --- p.65Chapter 3.5.4 --- Gateway Utility Menu --- p.67Chapter 3.5.5 --- Tools Menu --- p.67Chapter 3.5.6 --- Help Menu --- p.68Chapter 3.6 --- Chapter Summary --- p.68Chapter 4 --- A Local Map Based (LMB) Self-Healing Scheme for Arbitrary Topology Networks --- p.70Chapter 4.1 --- Introduction --- p.79Chapter 4.2 --- An Overview of Existing DCS-Based Restoration Algorithms --- p.72Chapter 4.3 --- The Network Model and Assumptions --- p.74Chapter 4.4 --- Basics of the LMB Scheme --- p.75Chapter 4.4.1 --- Restoration Concepts --- p.75Chapter 4.4.2 --- Terminology --- p.76Chapter 4.4.3 --- Algorithm Parameters --- p.77Chapter 4.5 --- Performance Assessments --- p.78Chapter 4.6 --- The LMB Network Restoration Scheme --- p.80Chapter 4.6.1 --- Initialization - Local Map Building --- p.80Chapter 4.6.2 --- The LMB Restoration Messages Set --- p.81Chapter 4.6.3 --- Phase I - Local Map Update Phase --- p.81Chapter 4.6.4 --- Phase II - Update Acknowledgment Phase --- p.82Chapter 4.6.5 --- Phase III - Restoration and Confirmation Phase --- p.83Chapter 4.6.6 --- Phase IV - Cancellation Phase --- p.83Chapter 4.6.7 --- Re-Initialization --- p.84Chapter 4.6.8 --- Path Route Monitoring --- p.84Chapter 4.7 --- Performance Evaluation --- p.84Chapter 4.7.1 --- The Testbeds --- p.84Chapter 4.7.2 --- Simulation Results --- p.86Chapter 4.7.3 --- Storage Requirements --- p.89Chapter 4.8 --- The LMB Scheme on ATM and SONET environment --- p.92Chapter 4.9 --- Future Work --- p.94Chapter 4.10 --- Chapter Summary --- p.94Chapter 5 --- Conclusion and Future Work --- p.96Chapter 5.1 --- Conclusion --- p.95Chapter 5.2 --- Future Work --- p.99Bibliography --- p.101Chapter A --- Derivation of Communicative Probability --- p.107Chapter B --- List of Publications --- p.11

    The Use of Firewalls in an Academic Environment

    No full text

    Technology 2003: The Fourth National Technology Transfer Conference and Exposition, volume 2

    Get PDF
    Proceedings from symposia of the Technology 2003 Conference and Exposition, Dec. 7-9, 1993, Anaheim, CA, are presented. Volume 2 features papers on artificial intelligence, CAD&E, computer hardware, computer software, information management, photonics, robotics, test and measurement, video and imaging, and virtual reality/simulation

    A high speed fault-tolerant multimedia network and connectionless gateway for ATM networks.

    Get PDF
    by Patrick Lam Sze Fan.Thesis (M.Phil.)--Chinese University of Hong Kong, 1997.Includes bibliographical references (leaves 163-[170]).Chapter 1 --- Introduction --- p.1Chapter 2 --- Fault-tolerant CUM LAUDE NET --- p.7Chapter 2.1 --- Overview of CUM LAUDE NET --- p.7Chapter 2.2 --- Network architecture of CUM LAUDE NET --- p.8Chapter 2.3 --- Design of Router-node --- p.10Chapter 2.3.1 --- Architecture of the Router-node --- p.10Chapter 2.3.2 --- Buffers Arrangement of the Router-node --- p.12Chapter 2.3.3 --- Buffer transmission policies --- p.13Chapter 2.4 --- Protocols of CUM LAUDE NET --- p.14Chapter 2.5 --- Frame Format of CUM LAUDE NET --- p.15Chapter 2.6 --- Fault-tolerant (FT) and Auto-healing (AH) algorithms --- p.16Chapter 2.6.1 --- Overview of the algorithms --- p.16Chapter 2.6.2 --- Network Failure Scenarios --- p.18Chapter 2.6.3 --- Design and Implementation of the Fault Tolerant Algorithm --- p.19Chapter 2.6.4 --- Design and Implementation of the Auto Healing Algorithm --- p.26Chapter 2.6.5 --- Network Management Signals and Restoration Times --- p.27Chapter 2.6.6 --- Comparison of fault-tolerance features of other networks with the CUM LAUDE NET --- p.31Chapter 2.7 --- Chapter Summary --- p.31Chapter 3 --- Overview of the Asynchronous Transfer Mode (ATM) --- p.33Chapter 3.1 --- Introduction --- p.33Chapter 3.2 --- ATM Network Interfaces --- p.34Chapter 3.3 --- ATM Virtual Connections --- p.35Chapter 3.4 --- ATM Cell Format --- p.36Chapter 3.5 --- ATM Address Formats --- p.36Chapter 3.6 --- ATM Protocol Reference Model --- p.38Chapter 3.6.1 --- The ATM Layer --- p.39Chapter 3.6.2 --- The ATM Adaptation Layer --- p.39Chapter 3.7 --- ATM Signalling --- p.44Chapter 3.7.1 --- ATM Signalling Messages and Call Setup Procedures --- p.45Chapter 3.8 --- Interim Local Management Interface (ILMI) --- p.47Chapter 4 --- Issues of Connectionless Gateway --- p.49Chapter 4.1 --- Introduction --- p.49Chapter 4.2 --- The Issues --- p.50Chapter 4.3 --- ATM Internetworking --- p.51Chapter 4.3.1 --- LAN Emulation --- p.52Chapter 4.3.2 --- IP over ATM --- p.53Chapter 4.3.3 --- Comparing IP over ATM and LAN Emulation --- p.59Chapter 4.4 --- Connection Management --- p.61Chapter 4.4.1 --- The Indirect Approach --- p.62Chapter 4.4.2 --- The Direct Approach --- p.63Chapter 4.4.3 --- Comparing the two approaches --- p.64Chapter 4.5 --- Protocol Conversion --- p.65Chapter 4.5.1 --- Selection of Protocol Converter --- p.68Chapter 4.6 --- Packet Forwarding Modes --- p.68Chapter 4.7 --- Bandwidth Assignment --- p.70Chapter 4.7.1 --- Bandwidth Reservation --- p.71Chapter 4.7.2 --- Fast Bandwidth Reservation --- p.72Chapter 4.7.3 --- Bandwidth Advertising --- p.72Chapter 4.7.4 --- Bandwidth Advertising with Cell Drop Detection --- p.73Chapter 4.7.5 --- Bandwidth Allocation on Source Demand --- p.73Chapter 4.7.6 --- The Common Problems --- p.74Chapter 5 --- Design and Implementation of the Connectionless Gateway --- p.77Chapter 5.1 --- Introduction --- p.77Chapter 5.1.1 --- Functions Definition of Connectionless Gateway --- p.79Chapter 5.2 --- Hardware Architecture of the Connectionless Gateway --- p.79Chapter 5.2.1 --- Imposed Limitations --- p.82Chapter 5.3 --- Software Architecture of the Connectionless Gateway --- p.83Chapter 5.3.1 --- TCP/IP Internals --- p.84Chapter 5.3.2 --- ATM on Linux --- p.85Chapter 5.4 --- Network Architecture --- p.88Chapter 5.4.1 --- IP Addresses Assignment --- p.90Chapter 5.5 --- Internal Structure of Connectionless Gateway --- p.90Chapter 5.5.1 --- Protocol Stacks of the Gateway --- p.90Chapter 5.5.2 --- Gateway Operation by Example --- p.93Chapter 5.5.3 --- Routing Table Maintenance --- p.97Chapter 5.6 --- Additional Features --- p.105Chapter 5.6.1 --- Priority Output Queues System --- p.105Chapter 5.6.2 --- Gateway Performance Monitor --- p.112Chapter 5.7 --- Setup an Operational ATM LAN --- p.117Chapter 5.7.1 --- SVC Connections --- p.117Chapter 5.7.2 --- PVC Connections --- p.119Chapter 5.8 --- Application of the Connectionless Gateway --- p.120Chapter 6 --- Performance Measurement of the Connectionless Gateway --- p.121Chapter 6.1 --- Introduction --- p.121Chapter 6.2 --- Experimental Setup --- p.121Chapter 6.3 --- Measurement Tools of the Experiments --- p.123Chapter 6.4 --- Descriptions of the Experiments --- p.124Chapter 6.4.1 --- Log Files --- p.125Chapter 6.5 --- UDP Control Rate Test --- p.126Chapter 6.5.1 --- Results and analysis of the UDP Control Rate Test --- p.127Chapter 6.6 --- UDP Maximum Rate Test --- p.138Chapter 6.6.1 --- Results and analysis of the UDP Maximum Rate Test --- p.138Chapter 6.7 --- TCP Maximum Rate Test --- p.140Chapter 6.7.1 --- Results and analysis of the TCP Maximum Rate Test --- p.140Chapter 6.8 --- Request/Response Test --- p.144Chapter 6.8.1 --- Results and analysis of the Request/Response Test --- p.144Chapter 6.9 --- Priority Queue System Verification Test --- p.149Chapter 6.9.1 --- Results and analysis of the Priority Queue System Verifi- cation Test --- p.150Chapter 6.10 --- Other Observations --- p.153Chapter 6.11 --- Solutions to Improve the Performance --- p.154Chapter 6.12 --- Future Development --- p.157Chapter 7 --- Conclusion --- p.158Bibliography --- p.163A List of Publications --- p.17
    corecore