3,080 research outputs found

    Model based safety analysis for an Unmanned Aerial System

    Get PDF
    This paper aims at describing safety architectures of autonomous systems by using Event-B formal method. The autonomous systems combine various activities which can be organised in layers. The Event-B formalism well supports the rigorous design of this kind of systems. Its refinement mechanism allows a progressive modelling by checking the correctness and the relevance of the models by discharging proof obligations. The application of the Event-B method within the framework of layered architecture specification enables the emergence of desired global properties with relation to layer interactions. The safety objectives are derived in each layer and they involve static and dynamic properties such as an independence property, a redundant property or a sequential property. The originality of our approach is to consider a refinement process between two layers in which the abstract model is the model of the lower layer. In our modelling, we distinguish nominal behaviour and abnormal behaviour in order to well establish failure propagation in our architecture

    Decentralized Hybrid Formation Control of Unmanned Aerial Vehicles

    Full text link
    This paper presents a decentralized hybrid supervisory control approach for a team of unmanned helicopters that are involved in a leader-follower formation mission. Using a polar partitioning technique, the motion dynamics of the follower helicopters are abstracted to finite state machines. Then, a discrete supervisor is designed in a modular way for different components of the formation mission including reaching the formation, keeping the formation, and collision avoidance. Furthermore, a formal technique is developed to design the local supervisors decentralizedly, so that the team of helicopters as whole, can cooperatively accomplish a collision-free formation task

    Strategy Synthesis for Autonomous Agents Using PRISM

    Get PDF
    We present probabilistic models for autonomous agent search and retrieve missions derived from Simulink models for an Unmanned Aerial Vehicle (UAV) and show how probabilistic model checking and the probabilistic model checker PRISM can be used for optimal controller generation. We introduce a sequence of scenarios relevant to UAVs and other autonomous agents such as underwater and ground vehicles. For each scenario we demonstrate how it can be modelled using the PRISM language, give model checking statistics and present the synthesised optimal controllers. We conclude with a discussion of the limitations when using probabilistic model checking and PRISM in this context and what steps can be taken to overcome them. In addition, we consider how the controllers can be returned to the UAV and adapted for use on larger search areas

    Integration of UAS in the civil airworthiness regulatory system: present and future

    Get PDF
    The last years are witnessing a number of initiatives worldwide devoted to assess the safety levels of the unmanned aircraft. These initiatives are very heterogeneous; some of them are centred in airworthiness aspects while others focus on operations. From the point of view of a potential UAS manufacturer the actual situation is plenty of uncertainties in relation to the regulations to be applied for certifying the design, manufacturing and maintenance, and from the point of view of the potential operator the situation is analogous with respect to operational procedures. In the present work the emphasis is on the manufacturer’s situation. The objective of this work is to clarify the present civil airworthiness regulatory scene by summarizing all the regulatory efforts up to date and preparing a comparative analysis of them. In this comparison, the manned regulations are included too. The most representative state-of-the-art UAS are analyzed from the point of view of the existing and the future regulatory framework. The main aspects to be considered are related to the airworthiness certification (performances, structural design, etc) for which a quantitative comparison is established in order to clarify how the new regulatory framework, mainly based on the conventional aircraft certification codes, will affect future UAS, compared to the existing regulation

    Optimal control of telecommunication aeroplatform in the area of emergency

    Get PDF
    This paper addresses to a method for increasing of mobile ad-hoc networks throughput based on the placement control of unmanned aerial vehicles in the area of emergency situation. A further development of this method, namely the improvement of UAV flight control subsystem, that will allow operative implementation of obtained in the previous stage location coordinates while minimizing energy consumption for control, is proposed. The proposed approach will improve network throughput by 15–20% while reducing fuel costs by an average of 13–15%
    corecore