367 research outputs found

    Secure Data Management and Transmission Infrastructure for the Future Smart Grid

    Get PDF
    Power grid has played a crucial role since its inception in the Industrial Age. It has evolved from a wide network supplying energy for incorporated multiple areas to the largest cyber-physical system. Its security and reliability are crucial to any country’s economy and stability [1]. With the emergence of the new technologies and the growing pressure of the global warming, the aging power grid can no longer meet the requirements of the modern industry, which leads to the proposal of ‘smart grid’. In smart grid, both electricity and control information communicate in a massively distributed power network. It is essential for smart grid to deliver real-time data by communication network. By using smart meter, AMI can measure energy consumption, monitor loads, collect data and forward information to collectors. Smart grid is an intelligent network consists of many technologies in not only power but also information, telecommunications and control. The most famous structure of smart grid is the three-layer structure. It divides smart grid into three different layers, each layer has its own duty. All these three layers work together, providing us a smart grid that monitor and optimize the operations of all functional units from power generation to all the end-customers [2]. To enhance the security level of future smart grid, deploying a high secure level data transmission scheme on critical nodes is an effective and practical approach. A critical node is a communication node in a cyber-physical network which can be developed to meet certain requirements. It also has firewalls and capability of intrusion detection, so it is useful for a time-critical network system, in other words, it is suitable for future smart grid. The deployment of such a scheme can be tricky regarding to different network topologies. A simple and general way is to install it on every node in the network, that is to say all nodes in this network are critical nodes, but this way takes time, energy and money. Obviously, it is not the best way to do so. Thus, we propose a multi-objective evolutionary algorithm for the searching of critical nodes. A new scheme should be proposed for smart grid. Also, an optimal planning in power grid for embedding large system can effectively ensure every power station and substation to operate safely and detect anomalies in time. Using such a new method is a reliable method to meet increasing security challenges. The evolutionary frame helps in getting optimum without calculating the gradient of the objective function. In the meanwhile, a means of decomposition is useful for exploring solutions evenly in decision space. Furthermore, constraints handling technologies can place critical nodes on optimal locations so as to enhance system security even with several constraints of limited resources and/or hardware. The high-quality experimental results have validated the efficiency and applicability of the proposed approach. It has good reason to believe that the new algorithm has a promising space over the real-world multi-objective optimization problems extracted from power grid security domain. In this thesis, a cloud-based information infrastructure is proposed to deal with the big data storage and computation problems for the future smart grid, some challenges and limitations are addressed, and a new secure data management and transmission strategy regarding increasing security challenges of future smart grid are given as well

    Secure Data Management and Transmission Infrastructure for the Future Smart Grid

    Get PDF
    Power grid has played a crucial role since its inception in the Industrial Age. It has evolved from a wide network supplying energy for incorporated multiple areas to the largest cyber-physical system. Its security and reliability are crucial to any country’s economy and stability [1]. With the emergence of the new technologies and the growing pressure of the global warming, the aging power grid can no longer meet the requirements of the modern industry, which leads to the proposal of ‘smart grid’. In smart grid, both electricity and control information communicate in a massively distributed power network. It is essential for smart grid to deliver real-time data by communication network. By using smart meter, AMI can measure energy consumption, monitor loads, collect data and forward information to collectors. Smart grid is an intelligent network consists of many technologies in not only power but also information, telecommunications and control. The most famous structure of smart grid is the three-layer structure. It divides smart grid into three different layers, each layer has its own duty. All these three layers work together, providing us a smart grid that monitor and optimize the operations of all functional units from power generation to all the end-customers [2]. To enhance the security level of future smart grid, deploying a high secure level data transmission scheme on critical nodes is an effective and practical approach. A critical node is a communication node in a cyber-physical network which can be developed to meet certain requirements. It also has firewalls and capability of intrusion detection, so it is useful for a time-critical network system, in other words, it is suitable for future smart grid. The deployment of such a scheme can be tricky regarding to different network topologies. A simple and general way is to install it on every node in the network, that is to say all nodes in this network are critical nodes, but this way takes time, energy and money. Obviously, it is not the best way to do so. Thus, we propose a multi-objective evolutionary algorithm for the searching of critical nodes. A new scheme should be proposed for smart grid. Also, an optimal planning in power grid for embedding large system can effectively ensure every power station and substation to operate safely and detect anomalies in time. Using such a new method is a reliable method to meet increasing security challenges. The evolutionary frame helps in getting optimum without calculating the gradient of the objective function. In the meanwhile, a means of decomposition is useful for exploring solutions evenly in decision space. Furthermore, constraints handling technologies can place critical nodes on optimal locations so as to enhance system security even with several constraints of limited resources and/or hardware. The high-quality experimental results have validated the efficiency and applicability of the proposed approach. It has good reason to believe that the new algorithm has a promising space over the real-world multi-objective optimization problems extracted from power grid security domain. In this thesis, a cloud-based information infrastructure is proposed to deal with the big data storage and computation problems for the future smart grid, some challenges and limitations are addressed, and a new secure data management and transmission strategy regarding increasing security challenges of future smart grid are given as well

    Smart Decision-Making via Edge Intelligence for Smart Cities

    Get PDF
    Smart cities are an ambitious vision for future urban environments. The ultimate aim of smart cities is to use modern technology to optimize city resources and operations while improving overall quality-of-life of its citizens. Realizing this ambitious vision will require embracing advancements in information communication technology, data analysis, and other technologies. Because smart cities naturally produce vast amounts of data, recent artificial intelligence (AI) techniques are of interest due to their ability to transform raw data into insightful knowledge to inform decisions (e.g., using live road traffic data to control traffic lights based on current traffic conditions). However, training and providing these AI applications is non-trivial and will require sufficient computing resources. Traditionally, cloud computing infrastructure have been used to process computationally intensive tasks; however, due to the time-sensitivity of many of these smart city applications, novel computing hardware/technologies are required. The recent advent of edge computing provides a promising computing infrastructure to support the needs of the smart cities of tomorrow. Edge computing pushes compute resources close to end users to provide reduced latency and improved scalability — making it a viable candidate to support smart cities. However, it comes with hardware limitations that are necessary to consider. This thesis explores the use of the edge computing paradigm for smart city applications and how to make efficient, smart decisions related to their available resources. This is done while considering the quality-of-service provided to end users. This work can be seen as four parts. First, this work touches on how to optimally place and serve AI-based applications on edge computing infrastructure to maximize quality-of-service to end users. This is cast as an optimization problem and solved with efficient algorithms that approximate the optimal solution. Second, this work investigates the applicability of compression techniques to reduce offloading costs for AI-based applications in edge computing systems. Finally, this thesis then demonstrate how edge computing can support AI-based solutions for smart city applications, namely, smart energy and smart traffic. These applications are approached using the recent paradigm of federated learning. The contributions of this thesis include the design of novel algorithms and system design strategies for placement and scheduling of AI-based services on edge computing systems, formal formulation for trade-offs between delivered AI model performance and latency, compression for offloading decisions for communication reductions, and evaluation of federated learning-based approaches for smart city applications

    Optimizing Sustainable Transit Bus Networks in Smart Cities

    Get PDF

    Optimizing Sustainable Transit Bus Networks in Smart Cities

    Get PDF
    Urban mobility has been facing several challenges in the recent years due to the increasing populations and private vehicles ownership, which led to several negative environmental and social impacts in big cities. In this dissertation, we investigate how decision support systems can enhance the role of transit bus networks in the transition to more sustainable and convenient urban mobility

    Computational Intelligence Approaches for Energy Optimization in Microgrids

    Get PDF
    The future electrical system termed as smart grid represents a significant paradigm shift for power industry. Nowadays, microgrids are becoming smarter with the integration of renewable energy resources (RESs) , diesel generators , energy storage systems (ESS), and plug-in electric vehicles (PEV or EV) . However, these integration bring with new challenges for intelligent management systems. The classical power generation approaches can no longer be applied to a microgrid with unpredictable renewable energy resources. To relive these problem, a proper power system optimization and a suitable coordination strategy are needed to balance the supply and demand. This thesis presents three projects to study the optimization and control for smart community and to investigate the strategic impact and the energy trading techniques for interconnected microgrids. The first goal of this thesis is to propose a new game-theoretic framework to study the optimization and decision making of multi-players in the distributed power system. The proposed game theoretic special concept-rational reaction set (RRS) is capable to model the game of the distributed energy providers and the large residential consumers. Meanwhile, the residential consumers are able to participate in the retail electricity market to control the market price. Case studies are conducted to validate the system framework using the proposed game theoretic method. The simulation results show the effectiveness and the accuracy of the proposed strategic framework for obtaining the optimum profits for players participating in this market. The second goal of the thesis is to study a distributed convex optimization framework for energy trading of interconnected microgrids to improve the reliability of system operation. In this work, a distributed energy trading approach for interconnected operation of islanded microgrids is studied. Specifically, the system includes several islanded microgrids that can trade energy in a given topology. A distributed iterative deep cut ellipsoid (DCE) algorithm is implemented with limited information exchange. This approach will address the scalability issue and also secure local information on cost functions. During the iterative process, the information exchange among interconnected microgrids is restricted to electricity prices and expected trading energy. Numerical results are presented in terms of the convergent rate of the algorithm for different topologies, and the performance of the DCE algorithm is compared with sub-gradient algorithm. The third goal of this thesis is to use proper optimization approaches to motivate the household consumers to either shift their loads from peaking periods or reduce their consumption. Genetic algorithm (GA) and dynamic programming (DP) based smart appliance scheduling schemes and time-of-use pricing are investigated for comparative studies with demand response

    Firefly algorithm for congestion management in deregulated environment

    Get PDF
    AbstractIn competitive electricity market, congestion is a serious economic and reliability concern. Congestion is a common problem that an independent system operator faces in open access electricity market. This paper presents a reliable and efficient meta-heuristic based approach to solve congestion problem. The proposed approach of the present work employs firefly algorithm (FFA) for alleviation of transmission network congestion in a pool based electricity market via active power rescheduling of generators. FFA is a new meta-heuristic approach based on flashing patterns and behavior of fireflies. Various important security constraints such as load bus voltage and line loading have been taken into account while dealing with congestion problem. The proposed methodology may help in removing the congestion of line with minimum rescheduling cost. The numerical results of modified IEEE 30- and 57-bus test power systems are illustrated

    Advanced Signal Processing Techniques Applied to Power Systems Control and Analysis

    Get PDF
    The work published in this book is related to the application of advanced signal processing in smart grids, including power quality, data management, stability and economic management in presence of renewable energy sources, energy storage systems, and electric vehicles. The distinct architecture of smart grids has prompted investigations into the use of advanced algorithms combined with signal processing methods to provide optimal results. The presented applications are focused on data management with cloud computing, power quality assessment, photovoltaic power plant control, and electrical vehicle charge stations, all supported by modern AI-based optimization methods

    Economic Operation of Self-Sustained Microgrid Optimal Operation by Multiobjective Evolutionary Algorithm Based on Decomposition

    Get PDF
    This paper focuses on the optimal operation of the islanded microgrid. A novel heuristic method known as the Multiobjective Evolutionary Algorithm Based on Decomposition is presented to search for the optimal solution with a fast response. The efficiency of the method is tested on the IEEE 33 bus test network
    • …
    corecore