951 research outputs found

    A class of multi-server queueing systems with unreliable servers: Models and application.

    Get PDF
    Where queueing systems with unreliable servers are concerned, most research that has been done focuses on one-server systems or systems with a Poisson arrival process and exponential service time. However, in some situations we need to consider non-exponential service time or service rate changes with the number of available servers. These are the queueing systems that are discussed in this thesis, none of which has ever been discussed in the literature. Since the phase type distribution is more general than the exponential distribution and captures most features of a general distribution, the phase type distributed service time is considered in unreliable queueing systems such as M/PH/n and M/PH/n/c. For the M/PH/n queueing system with unreliable servers, the mathematical model, stability condition analysis, stationary distribution calculation, computer programs and examples are all presented. For the M/PH/n/c queueing system with server failures, a finite birth-and-death mathematical model is built and the stationary distribution and performance evaluation measurements are calculated. Computer programs are developed and an example is given to demonstrate the application of this queueing system. (Abstract shortened by UMI.)Dept. of Industrial and Manufacturing Systems Engineering. Paper copy at Leddy Library: Theses & Major Papers - Basement, West Bldg. / Call Number: Thesis2003 .Y375. Source: Masters Abstracts International, Volume: 43-01, page: 0295. Adviser: Attahiru S. Alfa. Thesis (M.A.Sc.)--University of Windsor (Canada), 2004

    Performability modelling of homogenous and heterogeneous multiserver systems with breakdowns and repairs

    Get PDF
    This thesis presents analytical modelling of homogeneous multi-server systems with reconfiguration and rebooting delays, heterogeneous multi-server systems with one main and several identical servers, and farm paradigm multi-server systems. This thesis also includes a number of other research works such as, fast performability evaluation models of open networks of nodes with repairs and finite queuing capacities, multi-server systems with deferred repairs, and two stage tandem networks with failures, repairs and multiple servers at the second stage. Applications of these for the popular Beowulf cluster systems and memory servers are also accomplished. Existing techniques used in performance evaluation of multi-server systems are investigated and analysed in detail. Pure performance modelling techniques, pure availability models, and performability models are also considered. First, the existing approaches for pure performance modelling are critically analysed with the discussions on merits and demerits. Then relevant terminology is defined and explained. Since the pure performance models tend to be too optimistic and pure availability models are too conservative, performability models are used for the evaluation of multi-server systems. Fault-tolerant multi-server systems can continue service in case of certain failures. If failure does not occur at a critical point (such as breakdown of the head processor of a farm paradigm system) the system continues serving in a degraded mode of operation. In such systems, reconfiguration and/or rebooting delays are expected while a processor is being mapped out from the system. These delay stages are also taken into account in addition to failures and repairs, in the exact performability models that are developed. Two dimensional Markov state space representations of the systems are used for performability modelling. Following the critical analysis of the existing solution techniques, the Spectral Expansion method is chosen for the solution of the models developed. In this work, open queuing networks are also considered. To evaluate their performability, existing modelling approaches are expanded and validated by simulations, for performability analysis of multistage open networks with finite queuing capacities. The performances of two extended modelling approaches are compared in terms of accuracy for open networks with various queuing capacities. Deferred repair strategies are becoming popular because of the cost reductions they can provide. Effects of using deferred repairs are analysed and performability models are provided for homogeneous multi-server systems and highly available farm paradigm multi-server systems. Since one of the random variables is used to represent the number of jobs in one of the queues, analytical models for performance evaluation of two stage tandem networks suffer because of numerical cumbersomeness. Existing approaches for modelling these systems are actually pure performance models since breakdowns and repairs cannot be considered. One way of modelling these systems can be to divide one of the random variables to present both the operative and non-operative states of the server in one dimension. However, this will give rise to state explosion problem severely limiting the maximum queue capacity that can be handled. In order to overcome this problem a new approach is presented for modelling two stage tandem networks in three dimensions. An approximate solution is presented to solve such a system. This approach manifests itself as a novel contribution for alleviating the state space explosion problem for large and/or complex systems. When two state tandem networks with feedback are modelled using this approach, the operative states can be handled independently and this makes it possible to consider multiple operative states at the second stage. The analytical models presented can be used with various parameters and they are extendible to consider systems with similar architectures. The developed three dimensional approach is capable to handle two stage tandem networks with various characteristics for performability measures. All the approaches presented give accurate results. Numerical solutions are presented for all models developed. In case the solution presented is not exact, simulations are performed to validate the accuracy of the results obtained

    On M/G/1 system under NT policies with breakdowns, startup and closedown

    Get PDF
    AbstractThis paper studies the vacation policies of an M/G/1 queueing system with server breakdowns, startup and closedown times, in which the length of the vacation period is controlled either by the number of arrivals during the vacation period, or by a timer. After all the customers are served in the queue exhaustively, the server is shutdown (deactivates) by a closedown time. At the end of the shutdown time, the server immediately takes a vacation and operates two different policies: (i) The server reactivates as soon as the number of arrivals in the queue reaches to a predetermined threshold N or the waiting time of the leading customer reaches T units; and (ii) The server reactivates as soon as the number of arrivals in the queue reaches to a predetermined threshold N or T time units have elapsed since the end of the closedown time. If the timer expires or the number of arrivals exceeds the threshold N, then the server reactivates and requires a startup time before providing the service until the system is empty. If some customers arrive during this closedown time, the service is immediately started without leaving for a vacation and without a startup time. We analyze the system characteristics for each scheme

    Analysis of a multi-server queueing model with vacations and optional secondary services

    Get PDF
    In this paper we study a multi-server queueing model in which the customer arrive according to a Markovian arrival process. The customers may require, with a certain probability, an optional secondary service upon completion of a primary service. The secondary services are offered (in batches of varying size) when any of the following conditions holds good: (a) upon completion of a service a free server finds no primary customer waiting in the queue and there is at least one secondary customer (including possibly the primary customer becoming a secondary customer) waiting for service; (b) upon completion of a primary service, the customer requires a secondary service and at that time the number of customers needing a secondary service hits a pre-determined threshold value; (c) a server returning from a vacation finds no primary customer but at least one secondary customer waiting. The servers take vacation when there are no customers (either primary or secondary) waiting to receive service. The model is studied as a QBD-process using matrix-analytic methods and some illustrative examples arediscussed

    Performance and reliability modelling of computing systems using spectral expansion

    Get PDF
    PhD ThesisThis thesis is concerned with the analytical modelling of computing and other discrete event systems, for steady state performance and dependability. That is carried out using a novel solution technique, known as the spectral expansion method. The type of problems considered, and the systems analysed, are represented by certain two-dimensional Markov-processes on finite or semi-infinite lattice strips. A sub set of these Markov processes are the Quasi-Birth-and-Death processes. These models are important because they have wide ranging applications in the design and analysis of modern communications, advanced computing systems, flexible manufacturing systems and in dependability modelling. Though the matrixgeometric method is the presently most popular method, in this area, it suffers from certain drawbacks, as illustrated in one of the chapters. Spectral expansion clearly rises above those limitations. This also, is shown with the aid of examples. The contributions of this thesis can be divided into two categories. They are, • The theoretical foundation of the spectral expansion method is laid. Stability analysis of these Markov processes is carried out. Efficient numerical solution algorithms are developed. A comparative study is performed to show that the spectral expansion algorithm has an edge over the matrix-geometric method, in computational efficiency, accuracy and ease of use. • The method is applied to several non-trivial and complicated modelling problems, occuring in computer and communication systems. Performance measures are evaluated and optimisation issues are addressed
    • …
    corecore