903 research outputs found

    Hybrid Satellite-Terrestrial Communication Networks for the Maritime Internet of Things: Key Technologies, Opportunities, and Challenges

    Get PDF
    With the rapid development of marine activities, there has been an increasing number of maritime mobile terminals, as well as a growing demand for high-speed and ultra-reliable maritime communications to keep them connected. Traditionally, the maritime Internet of Things (IoT) is enabled by maritime satellites. However, satellites are seriously restricted by their high latency and relatively low data rate. As an alternative, shore & island-based base stations (BSs) can be built to extend the coverage of terrestrial networks using fourth-generation (4G), fifth-generation (5G), and beyond 5G services. Unmanned aerial vehicles can also be exploited to serve as aerial maritime BSs. Despite of all these approaches, there are still open issues for an efficient maritime communication network (MCN). For example, due to the complicated electromagnetic propagation environment, the limited geometrically available BS sites, and rigorous service demands from mission-critical applications, conventional communication and networking theories and methods should be tailored for maritime scenarios. Towards this end, we provide a survey on the demand for maritime communications, the state-of-the-art MCNs, and key technologies for enhancing transmission efficiency, extending network coverage, and provisioning maritime-specific services. Future challenges in developing an environment-aware, service-driven, and integrated satellite-air-ground MCN to be smart enough to utilize external auxiliary information, e.g., sea state and atmosphere conditions, are also discussed

    Analytical Modelling of Power Efficient Reliable Operation of Data Fusion in Wireless Sensor Network

    Get PDF
    Irrespective of inclusion of Wireless Sensor Network (WSN) in majority of the research proposition for smart city planning, it is still shrouded with some significant issues. A closer look into problems in WSN shows that energy parameter is the origination point of majority of the other problems in resource-constrained sensors as well as it significant minimizes the reliability in standard sensory operation in adverse environment. Therefore, this manuscript presents a novel analytical model that is meant for establishing a well balance between energy efficiency over multi-path data forwarding and reliable operation with improved network performance. The complete process is emphasized during data fusion stage to ensure data quality too. A simulation study has been carried out using benchmarked test-bed of MEMSIC nodes to find that proposed system offers good energy conservation process during data fusion operation as well as it also ensure good reliable operation in comparison to existing system

    A Comprehensive Survey of the Tactile Internet: State of the art and Research Directions

    Get PDF
    The Internet has made several giant leaps over the years, from a fixed to a mobile Internet, then to the Internet of Things, and now to a Tactile Internet. The Tactile Internet goes far beyond data, audio and video delivery over fixed and mobile networks, and even beyond allowing communication and collaboration among things. It is expected to enable haptic communication and allow skill set delivery over networks. Some examples of potential applications are tele-surgery, vehicle fleets, augmented reality and industrial process automation. Several papers already cover many of the Tactile Internet-related concepts and technologies, such as haptic codecs, applications, and supporting technologies. However, none of them offers a comprehensive survey of the Tactile Internet, including its architectures and algorithms. Furthermore, none of them provides a systematic and critical review of the existing solutions. To address these lacunae, we provide a comprehensive survey of the architectures and algorithms proposed to date for the Tactile Internet. In addition, we critically review them using a well-defined set of requirements and discuss some of the lessons learned as well as the most promising research directions

    Even lower latency in IIoT: evaluation of QUIC in industrial IoT scenarios

    Get PDF
    In this paper we analyze the performance of QUIC as a transport alternative for Internet of Things (IoT) services based on the Message Queuing Telemetry Protocol (MQTT). QUIC is a novel protocol promoted by Google, and was originally conceived to tackle the limitations of the traditional Transmission Control Protocol (TCP), specifically aiming at the reduction of the latency caused by connection establishment. QUIC use in IoT environments is not widespread, and it is therefore interesting to characterize its performance when in over such scenarios. We used an emulation-based platform, where we integrated QUIC and MQTT (using GO-based implementations) and compared their combined performance with the that exhibited by the traditional TCP/TLS approach. We used Linux containers as end devices, and the ns-3 simulator to emulate different network technologies, such as WiFi, cellular, and satellite, and varying conditions. The results evince that QUIC is indeed an appropriate protocol to guarantee robust, secure, and low latency communications over IoT scenarios.The authors are grateful for the funding of the Industrial Doctorates Program from the University of Cantabria (Call 2020). This work has been partially supported by the Basque Government through the Elkartek program under the DIGITAL project (grant agreement number KK-2019/00095), and by the Spanish Government (Ministerio de Economía y Competitividad, Fondo Europeo de Desarrollo Regional, FEDER) by means of the project FIERCE: Future Internet Enabled Resilient smart CitiEs (RTI2018-093475-AI00)

    Edge Computing Platforms and Protocols

    Get PDF
    Cloud computing has created a radical shift in expanding the reach of application usage and has emerged as a de-facto method to provide low-cost and highly scalable computing services to its users. Existing cloud infrastructure is a composition of large-scale networks of datacenters spread across the globe. These datacenters are carefully installed in isolated locations and are heavily managed by cloud providers to ensure reliable performance to its users. In recent years, novel applications, such as Internet-of-Things, augmented-reality, autonomous vehicles etc., have proliferated the Internet. Majority of such applications are known to be time-critical and enforce strict computational delay requirements for acceptable performance. Traditional cloud offloading techniques are inefficient for handling such applications due to the incorporation of additional network delay encountered while uploading pre-requisite data to distant datacenters. Furthermore, as computations involving such applications often rely on sensor data from multiple sources, simultaneous data upload to the cloud also results in significant congestion in the network. Edge computing is a new cloud paradigm which aims to bring existing cloud services and utilities near end users. Also termed edge clouds, the central objective behind this upcoming cloud platform is to reduce the network load on the cloud by utilizing compute resources in the vicinity of users and IoT sensors. Dense geographical deployment of edge clouds in an area not only allows for optimal operation of delay-sensitive applications but also provides support for mobility, context awareness and data aggregation in computations. However, the added functionality of edge clouds comes at the cost of incompatibility with existing cloud infrastructure. For example, while data center servers are closely monitored by the cloud providers to ensure reliability and security, edge servers aim to operate in unmanaged publicly-shared environments. Moreover, several edge cloud approaches aim to incorporate crowdsourced compute resources, such as smartphones, desktops, tablets etc., near the location of end users to support stringent latency demands. The resulting infrastructure is an amalgamation of heterogeneous, resource-constrained and unreliable compute-capable devices that aims to replicate cloud-like performance. This thesis provides a comprehensive collection of novel protocols and platforms for integrating edge computing in the existing cloud infrastructure. At its foundation lies an all-inclusive edge cloud architecture which allows for unification of several co-existing edge cloud approaches in a single logically classified platform. This thesis further addresses several open problems for three core categories of edge computing: hardware, infrastructure and platform. For hardware, this thesis contributes a deployment framework which enables interested cloud providers to effectively identify optimal locations for deploying edge servers in any geographical region. For infrastructure, the thesis proposes several protocols and techniques for efficient task allocation, data management and network utilization in edge clouds with the end-objective of maximizing the operability of the platform as a whole. Finally, the thesis presents a virtualization-dependent platform for application owners to transparently utilize the underlying distributed infrastructure of edge clouds, in conjunction with other co-existing cloud environments, without much management overhead.Pilvilaskenta on aikaansaanut suuren muutoksen sovellusten toiminta-alueessa ja on sen myötä muodostunut lähes oletusarvoiseksi tavaksi toteuttaa edullisia ja skaalautuvia laskentapalveluita käyttäjille. Olemassaoleva pilvi-infrastruktuuri on kokoelma suuren mittakaavan datakeskuksia ympäri maailman. Datakeskukset sijaitsevat maantieteellisesti tarkkaan valituissa paikoissa, joista pilvioperaattorit pystyvät takaamaan hyvän suorituskyvyn käyttäjilleen. Viime vuosina yleistyneet uudet sovellusalat, kuten esineiden Internet (IoT), lisätty todellisuus (AR), itseohjautuvat autot, jne., ovat yleistyneet Internetissä. Valtaosa edellä mainituista sovellusaloista on aikakriittisiä, ja ne asettavat laskennalle tiukan viivemarginaalin, jonka toteutuminen on edellytys sovelluksen hyväksyttävälle suorituskyvylle. Perinteiset menetelmät delegoida laskentaa pilvipalveluihin ovat kelvottomia aikakriittisissä sovelluksissa, sillä laskentaan liittyvän oheisdatan siirtämisestä johtuva verkkoviive on liian suuri. Useat edellä mainituista uusista sovellusaloista hyödyntävät sensoridataa, jota kerätään useista eri lähteistä. Samanaikaiset datayhteydet puolestaan aiheuttavat merkittävää ruuhkaa verkossa. Reunalaskenta on uusi pilviparadigma, jonka tavoitteena on tuoda nykyiset palvelut ja resurssit lähemmäksi loppukäyttäjää. Myös reunapilvenä tunnetun paradigman keskeinen tavoite on vähentää pilveen kohdistuvaa verkkoliikennettä suorittamalla sovelluksen vaatima laskenta resursseilla, jotka sijaitsevat lähempänä loppukäyttäjää. Reunapilvien tiheä maantieteellinen sijoittelu ei ainoastaan auta minimoimaan tiedonsiirtoviivettä aikakriittisiä sovelluksia varten, vaan tukee myös sovellusten mobiliteettia, kontekstitietoisuutta ja datan aggregointia laskentaa varten. Edellä mainitut reunapilven tarjoamat uudet mahdollisuudet eivät kuitenkaan ole yhteensopivia nykyisten pilvi-infrastruktuurien kanssa. Datakeskukset toimivat tarkoin valvotuissa ympäristöissä palvelun takaamiseksi, kun taas reunapilvien toiminta-alue on hallinnoimaton ja julkinen. Useat esitykset reunapilven toteutukseen liittyen hyödyntävät myös käyttäjien laitteiden potentiaalista laskentakapasiteettia, jota tänä päivänä löytyy runsaasti mm. älypuhelimista, kannettavista tietokoneista, tableteista. Reunapilven infrastruktuuri on täten haastava yhdistelmä heterogeenisiä, resurssirajoitettuja, epäluotettavia, mutta laskentakykyisiä laitteita, jotka yhdessä pyrkivät suorittamaan pilvilaskentaa. Tämä väitöstutkimus tarjoaa kokoelman uudentyyppisiä protokollia ja alustoja reunalaskennan integroimiseksi osaksi nykyistä pilvi-infrastruktuuria. Tutkimuksen pohjana on kokonaisvaltainen reunapilviarkkitehtuuri, joka pyrkii yhdistämään useita rinnakkaisia arkkitehtuuriehdotuksia yhdeksi loogiseksi pilvialustaksi. Väitöstutkimus ottaa myös kantaa useisiin avoimiin ongelmiin reunalaskennan kolmella osa-alueella: resurssit, infrastruktuuri ja palvelualusta. Resursseihin liittyen tämä väitöstutkimus tarjoaa käyttöönottokehyksen, jonka avulla palveluntarjoajat voivat tehokkaasti selvittää reunapalvelinten optimaaliset maantieteelliset sijoituskohteet. Infrastruktuurin osalta tämä väitöstutkimus esittelee reunapilvessä tapahtuvaa tehokasta tehtävien allokointia, datan hallinnointia ja verkon hyödyntämistä varten useita protokollia ja tekniikoita, joiden yhteinen tavoite on maksimoida alustan toiminnallisuus kokonaisuutena. Tämän väitöstutkimuksen lopussa kuvataan virtualisointiin pohjautuva alusta, jonka avulla käyttäjä voi läpinäkyvästi hyödyntää ympäröivää reunapilveä perinteisten pilvi-infrastruktuurien rinnalla ilman suurta hallinnollista kuormaa

    Advancement in infotainment system in automotive sector with vehicular cloud network and current state of art

    Get PDF
    The automotive industry has been incorporating various technological advancement on top-end versions of the vehicle order to improvise the degree of comfortability as well as enhancing the safer driving system. Infotainment system is one such pivotal system which not only makes the vehicle smart but also offers abundance of information as well as entertainment to the driver and passenger. The capability to offer extensive relay of service through infotainment system is highly dependent on vehicular adhoc network as well as back end support of cloud environment. However, it is know that such legacy system of vehicular adhoc network is also characterized by various problems associated with channel capacity, latency, heterogeneous network processing, and many more. Therefore, this paper offers a comprehensive insight to the research work being carried out towards leveraging the infotainment system in order to obtain the true picture of strength, limitation, and open end problems associated with infotainment system

    Low-latency Networking: Where Latency Lurks and How to Tame It

    Full text link
    While the current generation of mobile and fixed communication networks has been standardized for mobile broadband services, the next generation is driven by the vision of the Internet of Things and mission critical communication services requiring latency in the order of milliseconds or sub-milliseconds. However, these new stringent requirements have a large technical impact on the design of all layers of the communication protocol stack. The cross layer interactions are complex due to the multiple design principles and technologies that contribute to the layers' design and fundamental performance limitations. We will be able to develop low-latency networks only if we address the problem of these complex interactions from the new point of view of sub-milliseconds latency. In this article, we propose a holistic analysis and classification of the main design principles and enabling technologies that will make it possible to deploy low-latency wireless communication networks. We argue that these design principles and enabling technologies must be carefully orchestrated to meet the stringent requirements and to manage the inherent trade-offs between low latency and traditional performance metrics. We also review currently ongoing standardization activities in prominent standards associations, and discuss open problems for future research
    corecore