50 research outputs found

    Reliability Analysis of Self-Repairable MEMS Accelerometer

    Get PDF
    © 2008 IEEE. Reprinted, with permission, from [Xiong, Xingguo; Wu, Yu-Liang; Jone, Wen-Ben, Reliability Analysis of Self-Repairable MEMS Accelerometer, IEEE International Joint Conferences on Computer, Information, and Systems Sciences, and Engineering, 12-2008. The final published version can be found at the link below.MEMS (Microelectromechanical System) yield and reliability have been a very critical issue. In our previous paper, we have proposed a self-repairable MEMS comb accelerometer device, and the yield analysis has demonstrated effective yield increase due to the BISR (built-in self-repair) design. In this paper, we developed a MEMS reliability model for quantitative assessment of the MEMS reliability analysis. Based on this model, we analyze the reliability of both non-BISR and BISR MEMS comb accelerometers under Z-axis shocking environment. Simulation results demonstrate very effective reliability enhancement due to the BISR design. The reliability model can also be applied to other MEMS devices under various failure mechanisms in a similar way.http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4030934&tag=

    Control Circuitry for Self-Repairable MEMS Accelerometers

    Get PDF
    A BISR (Built-in Self-Repairable) MEMS comb accelerometer with modularized design has been previously reported. In this paper, the differential capacitance sensing circuitry for MEMS comb accelerometer is discussed. The BISR control circuitry based on CMOS transmission gates (TGs) is proposed. Each BISR module is connected to the capacitance sensing circuitry through a transmission gate. By turning on or off a transmission gate, the corresponding module can be either connected to or isolated from the capacitance sensing circuitry. In this way, the faulty module can be easily replaced with a good redundant module for self-repair. The parasitic model for the BISR control circuitry is also analyzed. The analysis results show that the parasitic capacitance will not affect the proper operation of the BISR control circuitry. Furthermore, the signal strength will not be degraded due to the insertion of analog multiplexers. The control circuitry can effectively isolate the faulty module of the BISR MEMS comb accelerometer. Both BISR and non-BISR MEMS accelerometer designs are suggested and their performances are also extracted for comparison

    Reliability Model for MEMS Accelerometers

    Get PDF
    The final publication is available at www.springerlink.comMEMS (Microelectromechanical System) reliability is a very critical issue for its commercial applications. In order to measure the reliability of MEMS, a systematic reliability model is required. In this paper, we developed a MEMS reliability model for quantitative assessment of the MEMS reliability analysis. Based on this model, we analyze the reliability of both BISR (built-in-self-repairable) and non-BISR MEMS comb accelerometers under Z-axis shocking environment. Simulation results demonstrate very effective reliability enhancement due to the BISR design. The reliability model can also be applied to other MEMS devices under various failure mechanisms in a similar way.http://link.springer.com/chapter/10.1007%2F978-1-4020-8737-0_4

    A Self-repairable MEMS Comb Accelerometer

    Get PDF
    The final publication is available at www.springerlink.comIn this paper, a built-in self-repair technique for the MEMS comb accelerometer device is proposed. The main device of the comb accelerometer consists of n identical modules, and m modules are introduced as the redundancy. If any of the working module in the main device is found faulty during a built-in self-test (BIST), the control circuit will replace it with a good redundant module. In this way, the faulty device can be self-repaired through redundancy. The implementation of dualmode BIST on the BISR module is discussed. The sensitivity loss due to device modularization can be well compensated by different design alternatives. The yield model for MEMS redundancy repair is developed. The simulation results show that the BISR (built-in self-repair) design leads to effective yield increase compared to non-BISR design, especially for a moderate non-BISR yield. The yield as well as the reliability of the accelerometer can be improved due to the redundancy repair.http://link.springer.com/chapter/10.1007%2F1-4020-5261-8_1

    MEMS Yield Simulation with Monte Carlo Method

    Get PDF
    The final publication is available at www.springerlink.comIn this paper, Monte Carlo method is used for the simulation of point-stiction defects in MEMS accelerometer devices. The yield of MEMS devices is estimated based on the simulation results. Comparison between simulated yields of BISR/non-BISR MEMS accelerometers demonstrates effective yield increase due to self-repairable design. The simulation results of yield increase versus different initial yields for BISR MEMS accelerometers are in good agreement with theoretical prediction based on previous MEMS yield model. This verifies the correctness of the MEMS yield model.http://link.springer.com/chapter/10.1007%2F978-1-4020-6266-7_9

    MEMS Accelerometers

    Get PDF
    Micro-electro-mechanical system (MEMS) devices are widely used for inertia, pressure, and ultrasound sensing applications. Research on integrated MEMS technology has undergone extensive development driven by the requirements of a compact footprint, low cost, and increased functionality. Accelerometers are among the most widely used sensors implemented in MEMS technology. MEMS accelerometers are showing a growing presence in almost all industries ranging from automotive to medical. A traditional MEMS accelerometer employs a proof mass suspended to springs, which displaces in response to an external acceleration. A single proof mass can be used for one- or multi-axis sensing. A variety of transduction mechanisms have been used to detect the displacement. They include capacitive, piezoelectric, thermal, tunneling, and optical mechanisms. Capacitive accelerometers are widely used due to their DC measurement interface, thermal stability, reliability, and low cost. However, they are sensitive to electromagnetic field interferences and have poor performance for high-end applications (e.g., precise attitude control for the satellite). Over the past three decades, steady progress has been made in the area of optical accelerometers for high-performance and high-sensitivity applications but several challenges are still to be tackled by researchers and engineers to fully realize opto-mechanical accelerometers, such as chip-scale integration, scaling, low bandwidth, etc

    Monitoring and Self-diagnosis of Civil Engineering Structures: Classical and Innovative Applications

    Get PDF
    Eventi estremi come esplosioni o terremoti possono avere un profondo impatto nella sicurezza degli edifici. Le zone sismiche devono convivere con questi tragici eventi, per questo monitorare in maniera continua le condizioni di salute di una struttura è necessario e auspicabile in molti casi. Il monitoraggio strutturale (Structural Health Monitoring – SHM) rappresenta un potente strumento per la valutazione del comportamento dinamico della struttura monitorata. Fino a pochi anni fa queste tecniche erano impiegate prevalentemente in ambito meccanico, aeronautico e nell’ingegneria aerospaziale. Al giorno d’oggi, la riduzione dei costi della strumentazione, sistemi di acquisizione dati di nuova generazione e l’incremento continuo dell’efficienta nelle analisi numeriche hanno reso possibile l’applicazione di queste tecniche anche a strutture civili ordinarie. Le tecniche di monitoraggio strutturale vengono applicate non solo in grandi infrastrutture come ponti, dighe o grattacieli, ma anche in strutture storiche o edifici residenziali. In questo contesto questa tesi tenta di esaminare differenti aspetti del monitoraggio strutturale, in particolar modo riferite a edifici ordinari. Attraverso tecniche Output-Only (Operational Modal Analysis – OMA) sono state monitorate diverse strutture civili con reti di sensori cablate, al fine di ottenere il comportamento dinamico strutturale nelle reali condizioni opertive. Particolare attenzione è stata focalizzata in un altra importante tematica dell’ingegneria strutturale: il danneggiamento strutturale. Attraverso un approccio numerico viene presentato un nuovo metodo per la localizzazione e quantificazione del danno a seguito di un evento sismico. In alternativa alla classica rete cablata, è stato sviluppato un sistema di acquisizione con sensori wireless (Wireless Sensor Network – WSN). I principali risultati ottenuti con questa applicazione vengono riportati nella presente tesi, unitamente al design dei sensori low-cost. Con l’ausilio della sensoristica sviluppata è stato monitorato un edificio storico in muratura, mostrando i risultati positivi ottenuti a seguito della campagna di acquisizione di rumore ambientale (Ambient Vibration Survey -AVS).Extreme events like explosions and earthquakes may have a deep impact on building safety. Seismic regions must live with these tragic events, so that continuous monitoring of structure health conditions is necessary in many cases. Structural Health Monitoring (SHM) represents a powerful tool for the evaluation of dynamic behavior of monitored structures. Until a few years ago these techniques were widely employed especially in mechanical, aeronautical and aerospace engineering. Nowadays, the reduction of equipment costs, the new generation of data acquisition systems, together with the continuous improvement of computational analysis have made it possible to apply SHM also to civil structures without strategic importance. SHM has moved from large infrastructures like bridges, dams and skyscrapers to historical heritage and residential buildings. In this background, the present work tries to examine different aspects of SHM applications, especially referred to ordinary buildings. Using Operational Modal Analysis (OMA) techniques, several civil structures have been monitored through a wired network sensor, in order to obtain the dynamic behavior in operating conditions. The relevant data collection provides a useful tool for calibrating the accuracy and sensitivity of similar SHM case studies. Specific attention is focused in another important issue in civil and in mechanical engineering: detection of structural damages. Through a numerical approach, a new method for damage localization and quantification is proposed. Besides the traditional wired acquisition system a Wireless Sensor Network (WSN) has been developed. The issues related to the usage of low-cost sensors and new generation data acquisition tools for non-destructive structural testing are discussed. Using the WSN an historical masonry building has been monitored, showing the positive results obtained following the Ambient Vibration Survey (AVS)

    Built-In Self-Test Solution for CMOS MEMS Sensors

    Get PDF
    This thesis presents a new readout circuit with integrated Built-in Self-Test (BIST) structure for capacitive Micro-Electro-Mechanical Systems (MEMS). In the proposed solution instead of commonly used voltage control signals to test the device, charge control stimuli are employed to cover a wider range of structural defects. The proposed test solution eliminates the risk of MEMS structural collapse in the test phase. Measurement results using a prototype fabricated in TSMC 65nm CMOS technology indicate that the proposed BIST scheme can successfully detect minor structural defects altering MEMS nominal capacitance

    Performance improvement of MEMS accelerometers in vibration based diagnosis

    Get PDF
    Vibration measurement and analysis has been an accepted method since decades to meet a number of objectives - machinery condition monitoring, dynamic qualification of any designed structural components, prediction of faults and structural aging-related problems, and several other structural dynamics studies and diagnosis. However, the requirement of the vibration measurement at number of locations in structures, machines and/or equipments makes the vibration measurement exorbitant if conventional piezoelectric accelerometers are used. Hence, there is a need for cheaper and reliable alternative for the conventional accelerometers. The Micro-Electro-Mechanical Systems (MEMS) accelerometers are one such cheap alternative. However, a significant deviation in the performance of the MEMS accelerometers has been observed in earlier research studies and also confirmed by this presented study when compared with well known conventional accelerometer. Therefore, two methods have been suggested to improve the performance of the existing MEMS accelerometers; one for correction in time domain and other in frequency domain. Both methods are based on the generation of a characteristic function (CF) for the MEMS accelerometer using well known reference accelerometer in laboratory tests. The procedures of both methods have been discussed and validations of these methods have been presented through experimental examples. In addition, a Finite Element (FE) model of a typical MEMS accelerometer has been developed and modal analysis has been carried out to understand the dynamics of capacitive type MEMS accelerometer and to identify the source of errors. It has been observed that the moving fingers behave like a cantilever beam while the fixed fingers showed rigid body motion. This cantilever type of motion seems to be causing non-parallel plates effect in the formed capacitors between moving and fixed fingers which results in errors in the vibration measurement. Hence, design modifications on finger shape have been suggested to remove the cantilever motion and results showed remarkable improvement. Moreover, the effect of using synchronous amplitude modulation and demodulation in the readout circuit has been studied. The experimental study showed that this circuit also introduces errors in amplitude and phase of the output signal compared with the input signal. Thus, in the new design of MEMS accelerometers, improvements in both mechanical design and electronic circuit are required.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore