299 research outputs found

    An Ontological Approach to Inform HMI Designs for Minimizing Driver Distractions with ADAS

    Get PDF
    ADAS (Advanced Driver Assistance Systems) are in-vehicle systems designed to enhance driving safety and efficiency as well as comfort for drivers in the driving process. Recent studies have noticed that when Human Machine Interface (HMI) is not designed properly, an ADAS can cause distraction which would affect its usage and even lead to safety issues. Current understanding of these issues is limited to the context-dependent nature of such systems. This paper reports the development of a holistic conceptualisation of how drivers interact with ADAS and how such interaction could lead to potential distraction. This is done taking an ontological approach to contextualise the potential distraction, driving tasks and user interactions centred on the use of ADAS. Example scenarios are also given to demonstrate how the developed ontology can be used to deduce rules for identifying distraction from ADAS and informing future designs

    Development of an integrated framework for satisfaction assessment of construction project teams

    Get PDF
    With increasing competitive pressures in today‟s market, it has become critical for businesses to recognise the significance of satisfying their customers so as to ensure their economic stability. Various studies have emphasised on the need for customer focus and project satisfaction in the construction industry sector. The industry, however, has not fully embraced the practice of project satisfaction, which is grounded on meeting the needs of the customer. Though most research on project satisfaction has focussed on the client, it is essential that the satisfaction of the project delivery team and in the wider context, the stakeholders be considered. In this case, the client is the centre of gravity of the project team. In order to satisfy the project team, there are challenges in assessing their requirements. This necessitates the need to develop a unique and robust method for capturing and analysing the level of integrated project team satisfaction. In this research, the project delivery team and the stakeholders have been lumped together as an integrated project team. Therefore, integrated project team satisfaction entails recognising the client and project participants‟ requirements that guarantees project successful completion and acceptance by the team. In view of this, this research presents a framework, which has been developed to plug these needs and challenges. The framework, known as the Satisfaction Assessment Integrated Framework (SAIF) involves an integrated approach that considers the participants of a construction project as a tree structure, and each member of that tree as an intermediate or top element. Relationships and interactions of the elements, and how these affect the overall satisfaction levels of a single project, are analysed based on understanding their requirements and invoking modern satisfaction attainment theory. The framework includes a method for understanding and identifying the satisfaction attributes; multi-attribute analysis for prioritising the satisfaction attributes of the clients and project participants; fault tree analysis strategy for defining the satisfaction relationship in a particular project team; and an assessment scoring system (a combination of multi-attribute analysis, and failure mode and effects analysis methodical approach) that evaluates how much each member of the project team meets the requirements or satisfaction attributes of other participants. Hence, SAIF, a novel assessment methodology, investigates and identifies possible links and the influence of integrating the construction project team and their satisfaction attributes with the aim of improving their satisfaction levels as a team. Through the findings of this research, recommendations are made to further explore the implications of satisfying a given participant against dissatisfying the participant; and subsequently improve the satisfaction assessment process.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Relationship between ergonomics and safety culture among safety and health officers in manufacturing companies in Malaysia

    Get PDF
    Ergonomics is one of the safety and health components that if implemented will contribute to job satisfaction. However, the relationship between ergonomics and safety culture is often neglected due to vague linkage. Although it is crucial, there is a lack of studies that link ergonomics with safety culture. The objectives of this study are to identify the role of ergonomics and safety culture with each other and to establish the relationship between ergonomics awareness (EA), ergonomics practices (EP), beliefs on the importance of safety culture (SCB) and existing safety culture practices (ESCP). Safety and Health Officers (SHO) are persons who are assigned to initiate ergonomics at workplace and good safety culture. Respondents were selected amongst the SHO in manufacturing companies in Malaysia. Pilot study (n=32) was done, full survey (n=146) was conducted and validation of the survey (n=75) was implemented. In order to achieve the first objective, Wilcoxon t-test was used to identify the level of ergonomics awareness and practices, and safety culture beliefs and practices. MANOVA was used to identify the effect of education level, past working experience and training received that significantly affect ergonomics awareness and practices. For the second objective, Exploratory Factor Analysis (EFA) using SPSS was done with Principle Axis Factoring to determine all the underlying dimensions. Then Confirmatory Factor Analysis (CFA) by using AMOS was done to confirm the constructs. Expert validation was done for the development of the constructs. Structural equation modelling technique was employed to assess the relationship between the constructs. The finding shows that the practices are still not in a high level compared to their awareness regardless of their formal education level. Training is believed to be the significant background of respondents that may affect their awareness. The results also show that two SCB constructs, three ESCP constructs, four EA constructs and two EP constructs were obtained. Overall, it illustrates a significant positive relationship between ergonomics and safety culture. Ergonomics awareness is able to inculcate existing safety culture practices, while existing safety culture practices are able to influence the practices of ergonomics at workplace. The conclusion is that there is a significant relationship between ergonomics and safety culture. This study has practical values in that SHO should relate ergonomics awareness and safety culture by managing the critical factors in order to get full benefits. It is proved empirically that ergonomics training that fits the factors considered may increase ergonomics awareness, thus influencing safety culture and ergonomics practices

    Reliability, Quality and Safety for Engineers, B. S. Dhillon, CRC Press, 2005, 219 pages

    No full text

    Intangible Costs of Data Breach Events

    Get PDF

    Luotettavuustiedon kerääminen palveluorganisaatiossa

    Get PDF
    Planning and assessing the effectiveness of maintenance operations relies heavily on the reliability data of the examined equipment. This data is readily available for equipment owners, but maintenance service providers struggle with acquiring it in quantity and quality needed for comprehensive analysis. Collecting this data would offer significant possibilities to develop both physical and service products for an original equipment manufacturer that also provides maintenance services for its equipment. In this thesis, a method for constructing and implementing a reliability data collection system is developed. During the thesis work, the current state of reliability data collection in the subject company was assessed, available data sources were identified, appropriate analysis tools were chosen, and data collection method and reporting models structured. The thesis is based on literacy research on the topic and interviews of subject company employees. The constructed method provides an iterative process that initially produces a reporting structure based on qualitative analysis of the product. When adequate amount of reliability data is collected, iteration round provides the organization with maintenance recommendations based on quantitative analysis. Analysis tools used in the process are well established and standardised by international standardization organizations.Huoltotoimintojen suunnittelu ja tehokkuuden arviointi nojaa vahvasti tutkittavasta laitteistosta kerättyyn vikaantumis- ja luotettavuusdataan. Tämä tieto on laitteistojen omistajille helposti saatavilla, mutta huoltopalveluiden toimittajille sen kerääminen analyysien vaatimassa laajuudessa on haasteellista. Luotettavuusdatan kerääminen tarjoaa laitteiden ja palveluiden toimittajalle merkittäviä mahdollisuuksia sekä laitteiden että palveluiden tuotekehityksessä. Tässä diplomityössä esitellään luotettavuusdatan keräämisjärjestelmän muodostamiseen ja käyttöönottoon tarkoitetun metodin kehitys. Diplomityön aikana määritettiin datankeräyksen tämänhetkinen tila kohde yrityksessä, tunnistettiin mahdolliset datalähteet, sopivat analysointimenetelmät valittiin ja mallit tiedonkeruuprosessiksi ja raportointi malleiksi kehitettiin. Diplomityö perustuu kirjallisuustutkimukseen ja kohdeyhtiön työntekijöiden haastatteluihin. Muodostettu metodi tarjoaa iteratiivisen prosessin joka tuottaa aluksi kvalitatiiviseen systeemianalyysiin perustuvan raportointi rakenteen. Kun luotettavuusdataan on kerätty tarvittava määrä, seuraava iteraatiokierros tuottaa kvantitatiiviseen analyysiin perustuvan huoltosuosituksen. Prosessissa käytetyt analysointi menetelmät ovat hyvin tunnettuja ja ne on standardoitu kansainvälisten standardointiorganisaatioiden toimesta

    Conceptual design of a support documentation system to assist troubleshooting in manufacturing

    Get PDF
    This research explores the conceptual design of a Support Documentation System (SDS), to assist manufacturing maintenance personnel during troubleshooting. Manufacturing systems maintenance is a crucial element of any organisation’s operating strategy. One of its main goals is to reduce downtime, both by avoiding the occurrence of failures and by effective reaction to breakdowns. Currently, most downtime reduction studies focus on the prevention of failures. Although these studies have made a significant contribution toward downtime reduction, it is impossible to prevent all failures. As such, troubleshooting will always be necessary for maintenance personnel to provide an effective contribution to their organisation. This research proposes a Support Documentation System that will improve maintenance through documentation management. It is argued that troubleshooting time will be reduced since such a system could provide maintenance personnel with enhanced access to support documentation, particularly to failure records. Until this research, little direct empirical evidence had been collected about the feasibility of such a system, and about the performance of current systems regarding troubleshooting support. There had also been no evidence concerning maintenance personnel requirements for improved support documentation. The objectives of this research are to assess the feasibility of the SDS, to determine why current systems do not effectively support troubleshooting, and to identify key features for the development of the SDS. To fulfil the objectives of this research, exploratory investigations were conducted. Questionnaire and interview surveys of maintenance practitioners, equipment vendors, and CMMS developers were performed to determine the status of failure records management and the reasons for the failure of current systems. A case study strategy was employed within three companies to identify requirements for the development of the SDS. The findings of this research are that the development of an SDS is feasible, and that current systems do not effectively support troubleshooting. The research identifies a set of design features for the SDS. It presents the end-user requirements, a ranking of most relevant troubleshooting data to be included in the failure records, and a list of record attributes that are to be used to better identify and classify records. The latter attributes constitute the means to manage failure records in a systematic way.Ph

    A Bayesian Network methodology for railway risk, safety and decision support

    Get PDF
    For railways, risk analysis is carried out to identify hazardous situations and their consequences. Until recently, classical methods such as Fault Tree Analysis (FTA) and Event Tree Analysis (ETA) were applied in modelling the linear and logically deterministic aspects of railway risks, safety and reliability. However, it has been proven that modern railway systems are rather complex, involving multi-dependencies between system variables and uncertainties about these dependencies. For train derailment accidents, for instance, high train speed is a common cause of failure; slip and failure of brake applications are disjoint events; failure dependency exists between the train protection and warning system and driver errors; driver errors are time dependent and there is functional uncertainty in derailment conditions. Failing to incorporate these aspects of a complex system leads to wrong estimations of the risks and safety, and, consequently, to wrong management decisions. Furthermore, a complex railway system integrates various technologies and is operated in an environment where the behaviour and failure modes of the system are difficult to model using probabilistic techniques. Modelling and quantification of the railway risk and safety problems that involve dependencies and uncertainties such as mentioned above are complex tasks. Importance measures are useful in the ranking of components, which are significant with respect to the risk, safety and reliability of a railway system. The computation of importance measures using FTA has limitation for complex railways. ALARP (As Low as Reasonably Possible) risk acceptance criteria are widely accepted as ’\'best practice’’ in the railways. According to the ALARP approach, a tolerable region exists between the regions of intolerable and negligible risks. In the tolerable region, risk is undertaken only if a benefit is desired. In this case, one needs to have additional criteria to identify the socio-economic benefits of adopting a safety measure for railway facilities. The Life Quality Index (LQI) is a rational way of establishing a relation between the financial resources utilized to improve the safety of an engineering system and the potential fatalities that can be avoided by safety improvement. This thesis shows the application of the LQI approach to quantifying the social benefits of a number of safety management plans for a railway facility. We apply Bayesian Networks and influence diagrams, which are extensions of Bayesian Networks, to model and assess the life safety risks associated with railways. Bayesian Networks are directed acyclic probabilistic graphical models that handle the joint distribution of random variables in a compact and flexible way. In influence diagrams, problems of probabilistic inference and decision making – based on utility functions – can be combined and optimized, especially, for systems with many dependencies and uncertainties. The optimal decision, which maximizes the total benefits to society, is obtained. In this thesis, the application of Bayesian Networks to the railway industry is investigated for the purpose of improving modelling and the analysis of risk, safety and reliability in railways. One example application and two real world applications are presented to show the usefulness and suitability of the Bayesian Networks for the quantitative risk assessment and risk-based decision support in reference to railways.:ACKNOWLEDGEMENTS IV ABSTRACT VI ZUSAMMENFASSUNG VIII LIST OF FIGURES XIV LIST OF TABLES XVI CHAPTER 1: Introduction 1 1.1 Need to model and quantify the causes and consequences of hazards on railways 1 1.2 State-of-the art techniques in the railway 2 1.3 Goals and scope of work 4 1.4 Existing work 6 1.5 Outline of the thesis 7 CHAPTER 2: Methods for safety and risk analysis 10 2.1 Introduction 10 2.1.1 Simplified risk analysis 12 2.1.2 Standard risk analysis 12 2.1.3 Model-based risk analysis 12 2.2 Risk Matrix 14 2.2.1 Determine the possible consequences 14 2.2.2 Likelihood of occurrence 15 2.2.3 Risk scoring matrix 15 2.3 Failure Modes & Effect Analysis – FMEA 16 2.3.1 Example application of FMEA 17 2.4 Fault Tree Analysis – FTA 19 2.5 Reliability Block Diagram – RBD 22 2.6 Event Tree Analysis – ETA 24 2.7 Safety Risk Model – SRM 25 2.8 Markov Model – MM 27 2.9 Quantification of expected values 31 2.9.1 Bayesian Analysis – BA 35 2.9.2 Hazard Function – HF 39 2.9.3 Monte Carlo (MC) Simulation 42 2.10 Summary 46 CHAPTER 3: Introduction to Bayesian Networks 48 3.1 Terminology in Bayesian Networks 48 3.2 Construction of Bayesian Networks 49 3.3 Conditional independence in Bayesian Networks 51 3.4 Joint probability distribution in Bayesian Networks 52 3.5 Probabilistic Inference in Bayesian Networks 53 3.6 Probabilistic inference by enumeration 54 3.7 Probabilistic inference by variable elimination 55 3.8 Approximate inference for Bayesian Networks 57 3.9 Dynamic Bayesian Networks 58 3.10 Influence diagrams (IDs) 60 CHAPTER 4: Risk acceptance criteria and safety targets 62 4.1 Introduction 62 4.2 ALARP (As Low As Reasonably Possible) criteria 62 4.3 MEM (Minimum Endogenous Mortality) criterion 63 4.4 MGS (Mindestens Gleiche Sicherheit) criteria 64 4.5 Safety Integrity Levels (SILs) 65 4.6 Importance Measures (IMs) 66 4.7 Life Quality Index (LQI) 68 4.8 Summary 72 CHAPTER 5: Application of Bayesian Networks to complex railways: A study on derailment accidents 73 5.1 Introduction 73 5.2 Fault Tree Analysis for train derailment due to SPAD 74 5.2.1 Computation of importance measures using FTA 75 5.3 Event Tree Analysis (ETA) 78 5.4 Mapping Fault Tree and Event Tree based risk model to Bayesian Networks 79 5.4.1 Computation of importance measures using Bayesian Networks 81 5.5 Risk quantification 82 5.6 Advanced aspects of example application 83 5.6.1 Advanced aspect 1: Common cause failures 83 5.6.2 Advanced aspect 2: Disjoint events 84 5.6.3 Advanced aspect 3: Multistate system and components 84 5.6.4 Advanced aspect 4: Failure dependency 85 5.6.5 Advanced aspect 5: Time dependencies 85 5.6.6 Advanced aspect 6: Functional uncertainty and factual knowledge 85 5.6.7 Advanced aspect 7: Uncertainty in expert knowledge 86 5.6.8 Advanced aspect 8: Simplifications and dependencies in Event Tree Analysis 86 5.7 Implementation of the advanced aspects of the train derailment model using Bayesian Networks. 88 5.8 Results and discussions 92 5.9 Summary 93 CHAPTER 6: Bayesian Networks for risk-informed safety requirements for platform screen doors in railways 94 6.1 Introduction 94 6.2 Components of the risk-informed safety requirement process for Platform Screen Door system in a mega city 97 6.2.1 Define objective and methodology 97 6.2.2 Familiarization of system and information gathering 97 6.2.3 Hazard identification and hazard classification 97 6.2.4 Hazard scenario analysis 98 6.2.5 Probability of occurrence and failure data 99 6.2.6 Quantification of the risks 105 6.2.6.1. Tolerable risks 105 6.2.6.2. Risk exposure 105 6.2.6.3. Risk assessment 106 6.3 Summary 107 CHAPTER 7: Influence diagrams based decision support for railway level crossings 108 7.1 Introduction 108 7.2 Level crossing accidents in railways 109 7.3 A case study of railway level crossing 110 7.4 Characteristics of the railway level crossing under investigation 111 7.5 Life quality index applied to railway level crossing risk problem 115 7.6 Summary 119 CHAPTER 8: Conclusions and outlook 120 8.1 Summary and important contributions 120 8.2 Originality of the work 122 8.3 Outlook 122 BIBLIOGRAPHY 124 APPENDIX 1 13

    Risk-based maintenance of critical and complex systems

    Get PDF
    Tableau d’honneur de la Faculté des études supérieures et postdoctorales, 2016-2017.De nos jours, la plupart des systèmes dans divers secteurs critiques tels que l'aviation, le pétrole et les soins de santé sont devenus très complexes et dynamiques, et par conséquent peuvent à tout moment s'arrêter de fonctionner. Pour éviter que cela ne se reproduise et ne devienne incontrôlable ce qui engagera des pertes énormes en matière de coûts et d'indisponibilité; l'adoption de stratégies de contrôle et de maintenance s'avèrent plus que nécessaire et même vitale. Dans le génie des procédés, les stratégies optimales de maintenance pour ces systèmes pourraient avoir un impact significatif sur la réduction des coûts et sur les temps d'arrêt, sur la maximisation de la fiabilité et de la productivité, sur l'amélioration de la qualité et enfin pour atteindre les objectifs souhaités des compagnies. En outre, les risques et les incertitudes associés à ces systèmes sont souvent composés de plusieurs relations de cause à effet de façon extrêmement complexe. Cela pourrait mener à une augmentation du nombre de défaillances de ces systèmes. Par conséquent, un outil d'analyse de défaillance avancée est nécessaire pour considérer les interactions complexes de défaillance des composants dans les différentes phases du cycle de vie du produit pour assurer les niveaux élevés de sécurité et de fiabilité. Dans cette thèse, on aborde dans un premier temps les lacunes des méthodes d'analyse des risques/échec et celles qui permettent la sélection d'une classe de stratégie de maintenance à adopter. Nous développons ensuite des approches globales pour la maintenance et l'analyse du processus de défaillance fondée sur les risques des systèmes et machines complexes connus pour être utilisées dans toutes les industries. Les recherches menées pour la concrétisation de cette thèse ont donné lieu à douze contributions importantes qui se résument comme suit: Dans la première contribution, on aborde les insuffisances des méthodes en cours de sélection de la stratégie de maintenance et on développe un cadre fondé sur les risques en utilisant des méthodes dites du processus de hiérarchie analytique (Analytical Hierarchy Process (AHP), de cartes cognitives floues (Fuzzy Cognitive Maps (FCM)), et la théorie des ensembles flous (Fuzzy Soft Sets (FSS)) pour sélectionner la meilleure politique de maintenance tout en considérant les incertitudes. La deuxième contribution aborde les insuffisances de la méthode de l'analyse des modes de défaillance, de leurs effets et de leur criticité (AMDEC) et son amélioration en utilisant un modèle AMDEC basée sur les FCM. Les contributions 3 et 4, proposent deux outils de modélisation dynamique des risques et d'évaluation à l'aide de la FCM pour faire face aux risques de l'externalisation de la maintenance et des réseaux de collaboration. Ensuite, on étend les outils développés et nous proposons un outil d'aide à la décision avancée pour prédire l'impact de chaque risque sur les autres risques ou sur la performance du système en utilisant la FCM (contribution 5).Dans la sixième contribution, on aborde les risques associés à la maintenance dans le cadre des ERP (Enterprise Resource Planning (ERP)) et on propose une autre approche intégrée basée sur la méthode AMDEC floue pour la priorisation des risques. Dans les contributions 7, 8, 9 et 10, on effectue une revue de la littérature concernant la maintenance basée sur les risques des dispositifs médicaux, puisque ces appareils sont devenus très complexes et sophistiqués et l'application de modèles de maintenance et d'optimisation pour eux est assez nouvelle. Ensuite, on développe trois cadres intégrés pour la planification de la maintenance et le remplacement de dispositifs médicaux axée sur les risques. Outre les contributions ci-dessus, et comme étude de cas, nous avons réalisé un projet intitulé “Mise à jour de guide de pratique clinique (GPC) qui est un cadre axé sur les priorités pour la mise à jour des guides de pratique cliniques existantes” au centre interdisciplinaire de recherche en réadaptation et intégration sociale du Québec (CIRRIS). Nos travaux au sein du CIRRIS ont amené à deux importantes contributions. Dans ces deux contributions (11e et 12e) nous avons effectué un examen systématique de la littérature pour identifier les critères potentiels de mise à jour des GPCs. Nous avons validé et pondéré les critères identifiés par un sondage international. Puis, sur la base des résultats de la onzième contribution, nous avons développé un cadre global axé sur les priorités pour les GPCs. Ceci est la première fois qu'une telle méthode quantitative a été proposée dans la littérature des guides de pratiques cliniques. L'évaluation et la priorisation des GPCs existants sur la base des critères validés peuvent favoriser l'acheminement des ressources limitées dans la mise à jour de GPCs qui sont les plus sensibles au changement, améliorant ainsi la qualité et la fiabilité des décisions de santé.Today, most systems in various critical sectors such as aviation, oil and health care have become very complex and dynamic, and consequently can at any time stop working. To prevent this from reoccurring and getting out of control which incur huge losses in terms of costs and downtime; the adoption of control and maintenance strategies are more than necessary and even vital. In process engineering, optimal maintenance strategies for these systems could have a significant impact on reducing costs and downtime, maximizing reliability and productivity, improving the quality and finally achieving the desired objectives of the companies. In addition, the risks and uncertainties associated with these systems are often composed of several extremely complex cause and effect relationships. This could lead to an increase in the number of failures of such systems. Therefore, an advanced failure analysis tool is needed to consider the complex interactions of components’ failures in the different phases of the product life cycle to ensure high levels of safety and reliability. In this thesis, we address the shortcomings of current failure/risk analysis and maintenance policy selection methods in the literature. Then, we develop comprehensive approaches to maintenance and failure analysis process based on the risks of complex systems and equipment which are applicable in all industries. The research conducted for the realization of this thesis has resulted in twelve important contributions, as follows: In the first contribution, we address the shortcomings of the current methods in selecting the optimum maintenance strategy and develop an integrated risk-based framework using Analytical Hierarchy Process (AHP), fuzzy Cognitive Maps (FCM), and fuzzy Soft set (FSS) tools to select the best maintenance policy by considering the uncertainties.The second contribution aims to address the shortcomings of traditional failure mode and effect analysis (FMEA) method and enhance it using a FCM-based FMEA model. Contributions 3 and 4, present two dynamic risk modeling and assessment tools using FCM for dealing with risks of outsourcing maintenance and collaborative networks. Then, we extend the developed tools and propose an advanced decision support tool for predicting the impact of each risk on the other risks or on the performance of system using FCM (contribution 5). In the sixth contribution, we address the associated risks in Enterprise Resource Planning (ERP) maintenance and we propose another integrated approach using fuzzy FMEA method for prioritizing the risks. In the contributions 7, 8, 9, and 10, we perform a literature review regarding the risk-based maintenance of medical devices, since these devices have become very complex and sophisticated and the application of maintenance and optimization models to them is fairly new. Then, we develop three integrated frameworks for risk-based maintenance and replacement planning of medical devices. In addition to above contributions, as a case study, we performed a project titled “Updating Clinical Practice Guidelines; a priority-based framework for updating existing guidelines” in CIRRIS which led to the two important contributions. In these two contributions (11th and 12th) we first performed a systematic literature review to identify potential criteria in updating CPGs. We validated and weighted the identified criteria through an international survey. Then, based on the results of the eleventh contribution, we developed a comprehensive priority-based framework for updating CPGs based on the approaches that we had already developed and applied success fully in other industries. This is the first time that such a quantitative method has been proposed in the literature of guidelines. Evaluation and prioritization of existing CPGs based on the validated criteria can promote channelling limited resources into updating CPGs that are most sensitive to change, thus improving the quality and reliability of healthcare decisions made based on current CPGs. Keywords: Risk-based maintenance, Maintenance strategy selection, FMEA, FCM, Medical devices, Clinical practice guidelines
    • …
    corecore