2,960 research outputs found

    Relevant states and memory in Markov chain bootstrapping and simulation

    Get PDF
    Markov chain theory is proving to be a powerful approach to bootstrap and simulate highly nonlinear time series. In this work, we provide a method to estimate the memory of a Markov chain (i.e. its order) and to identify its relevant states. In particular, the choice of memory lags and the aggregation of irrelevant states are obtained by looking for regularities in the transition probabilities. Our approach is based on an optimization model. More specifically, we consider two competing objectives that a researcher will in general pursue when dealing with bootstrapping and simulation: preserving the “structural” similarity between the original and the resampled series, and assuring a controlled diversification of the latter. A discussion based on information theory is developed to define the desirable properties for such optimal criteria. Two numerical tests are developed to verify the effectiveness of the proposed method

    Relevant States and Memory in Markov Chain Bootstrapping and Simulation

    Get PDF
    Markov chain theory is proving to be a powerful approach to bootstrap highly nonlinear time series. In this work we provide a method to estimate the memory of a Markov chain (i.e. its order) and to identify its relevant states. In particular the choice of memory lags and the aggregation of irrelevant states are obtained by looking for regularities in the transition probabilities. Our approach is based on an optimization model. More specifically we consider two competing objectives that a researcher will in general pursue when dealing with bootstrapping: preserving the “structural” similarity between the original and the simulated series and assuring a controlled diversification of the latter. A discussion based on information theory is developed to define the desirable properties for such optimal criteria. Two numerical tests are developed to verify the effectiveness of the method proposed here

    Relevant States and Memory in Markov Chain Bootstrapping and Simulation

    Get PDF
    Markov chain theory is proving to be a powerful approach to bootstrap highly nonlinear time series. In this work we provide a method to estimate the memory of a Markov chain (i.e. its order) and to identify its relevant states. In particular the choice of memory lags and the aggregation of irrelevant states are obtained by looking for regularities in the transition probabilities. Our approach is based on an optimization model. More specifically we consider two competing objectives that a researcher will in general pursue when dealing with bootstrapping: preserving the “structural” similarity between the original and the simulated series and assuring a controlled diversification of the latter. A discussion based on information theory is developed to define the desirable properties for such optimal criteria. Two numerical tests are developed to verify the effectiveness of the method proposed here

    Relevant States and Memory in Markov Chain Bootstrapping and Simulation

    Get PDF
    Markov chain theory is proving to be a powerful approach to bootstrap highly nonlinear time series. In this work we provide a method to estimate the memory of a Markov chain (i.e. its order) and to identify its relevant states. In particular the choice of memory lags and the aggregation of irrelevant states are obtained by looking for regularities in the transition probabilities. Our approach is based on an optimization model. More specifically we consider two competing objectives that a researcher will in general pursue when dealing with bootstrapping: preserving the “structural” similarity between the original and the simulated series and assuring a controlled diversification of the latter. A discussion based on information theory is developed to define the desirable properties for such optimal criteria. Two numerical tests are developed to verify the effectiveness of the method proposed here

    Approximating Markov Chains for Bootstrapping and Simulation

    Get PDF
    In this work we develop a bootstrap method based on the theory of Markov chains. The method moves from the two competing objectives that a researcher pursues when performing a bootstrap procedure: (i) to preserve the structural similarity -in statistical sense- between the original and the bootstrapped sample; (ii) to assure a diversification of the latter with respect to the former. The original sample is assumed to be driven by a Markov chain. The approach we follow is to implement an optimization problem to estimate the memory of a Markov chain (i.e. its order) and to identify its relevant states. The basic ingredients of the model are the transition probabilities, whose distance is measured through a suitably defined functional. We apply the method to the series of electricity prices in Spain. A comparison with the Variable Length Markov Chain bootstrap, which is a well established bootstrap method, shows the superiority of our proposal in reproducing the dependence among data

    Testing the Power of Leading Indicators to Predict Business Cycle Phase Changes

    Get PDF
    In the business cycle literature researchers often want to determine the extent to which models of the business cycle reproduce broad characteristics of the real world business cycle they purport to represent. Of considerable interest is whether a model’s implied cycle chronology is consistent with the actual business cycle chronology. In the US, a very widely accepted business cycle chronology is that compiled by the National Bureau of Economic research (NBER) and the vast majority of US business cycle scholars have, for many years, proceeded to test their models for their consistency with the NBER dates. In doing this, one of the most prevalent metrics in use since its introduction into the business cycle literature by Diebold and Rudebusch (1989) is the so-called quadratic probability score, or QPS. However, an important limitation to the use of the QPS statistic is that its sampling distribution is unknown so that rigorous statistical inference is not feasible. We suggest circumventing this by bootstrapping the distribution. This analysis yields some interesting insights into the relationship between statistical measures of goodness of fit of a model and the ability of the model to predict some underlying set of regimes of interest. Furthermore, in modeling the business cycle, a popular approach in recent years has been to use some variant of the so-called Markov regime switching (MRS) model first introduced by Hamilton (1989) and we therefore use MRS models as the framework for the paper. Of course, the approach could be applied to any US business cycle model.Markov Regime Switching, Business Cycle, Quadratic Probability Score

    A Tabu Search Heuristic Procedure in Markov Chain Bootstrapping

    Get PDF
    Markov chain theory is proving to be a powerful approach to bootstrap nite states processes, especially where time dependence is non linear. In this work we extend such approach to bootstrap discrete time continuous-valued processes. To this purpose we solve a minimization problem to partition the state space of a continuous-valued process into a nite number of intervals or unions of intervals (i.e. its states) and identify the time lags which provide \memory" to the process. A distance is used as objective function to stimulate the clustering of the states having similar transition probabilities. The problem of the exploding number of alternative partitions in the solution space (which grows with the number of states and the order of the Markov chain) is addressed through a Tabu Search algorithm. The method is applied to bootstrap the series of the German and Spanish electricity prices. The analysis of the results conrms the good consistency properties of the method we propose

    The Computational Structure of Spike Trains

    Full text link
    Neurons perform computations, and convey the results of those computations through the statistical structure of their output spike trains. Here we present a practical method, grounded in the information-theoretic analysis of prediction, for inferring a minimal representation of that structure and for characterizing its complexity. Starting from spike trains, our approach finds their causal state models (CSMs), the minimal hidden Markov models or stochastic automata capable of generating statistically identical time series. We then use these CSMs to objectively quantify both the generalizable structure and the idiosyncratic randomness of the spike train. Specifically, we show that the expected algorithmic information content (the information needed to describe the spike train exactly) can be split into three parts describing (1) the time-invariant structure (complexity) of the minimal spike-generating process, which describes the spike train statistically; (2) the randomness (internal entropy rate) of the minimal spike-generating process; and (3) a residual pure noise term not described by the minimal spike-generating process. We use CSMs to approximate each of these quantities. The CSMs are inferred nonparametrically from the data, making only mild regularity assumptions, via the causal state splitting reconstruction algorithm. The methods presented here complement more traditional spike train analyses by describing not only spiking probability and spike train entropy, but also the complexity of a spike train's structure. We demonstrate our approach using both simulated spike trains and experimental data recorded in rat barrel cortex during vibrissa stimulation.Comment: Somewhat different format from journal version but same conten
    • …
    corecore